Chinburg, T.; Hamilton, E.; Long, D. D.; Reid, A. W. Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds. (English) Zbl 1169.53030 Duke Math. J. 145, No. 1, 25-44 (2008). Let \(M\) be a closed, orientable Riemannian manifold of negative curvature. The rational length spectrum \(QL(M)\) of \(M\) is the set of all rational multiples of lengths of closed geodesics of \(M\). The commensurability class of \(M\) is the set of all manifolds \(M'\) for which \(M\) and \(M'\) have a common finite unramified cover. The main result is:Theorem. If \(M\) is an arithmetic hyperbolic 3-manifold, then the rational length spectrum and the commensurability class of \(M\) determine one another.This paper sharpens the result in [A. W. Reid, Duke Math. J. 65, No. 2, 215–228 (1992; Zbl 0776.58040)], where it was proved that the complex length spectrum of \(M\) determines its commensurability class. Reviewer: Mikhail Malakhal’tsev (Kazan) Cited in 2 ReviewsCited in 13 Documents MSC: 53C22 Geodesics in global differential geometry 58J53 Isospectrality 11R42 Zeta functions and \(L\)-functions of number fields Keywords:arithmetic hyperbolic 3-manifold; rational length spectrum; commensurability class Citations:Zbl 0776.58040 PDF BibTeX XML Cite \textit{T. Chinburg} et al., Duke Math. J. 145, No. 1, 25--44 (2008; Zbl 1169.53030) Full Text: DOI References: [1] A. Baker, Transcendental Number Theory , 2nd ed., Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1990. · Zbl 0715.11032 [2] W. Bosma and B. De Smit, “On arithmetically equivalent number fields of small degree” in Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci. 2369 , Springer, Berlin, 2002, 67–79. · Zbl 1068.11080 [3] P. G. Doyle and J. P. Rossetti, Tetra and Didi, the cosmic spectral twins , Geom. Topol. 8 (2004), 1227–1242. · Zbl 1091.58021 [4] R. Gangolli, The length spectra of some compact manifolds of negative curvature , J. Differential Geom. 12 (1977), 403–424. · Zbl 0365.53016 [5] I. M. Isaacs and T. Zieschang, Generating symmetric groups , Amer. Math. Monthly 102 (1995), 734–739. JSTOR: · Zbl 0846.20004 [6] J. KlüNers, Über die Asymptotik von Zahlkörpern mit vorgegebener Galoisgruppe , Habilitationsschrift, Universitität Kassel, Kassel, Germany, Shaker, Aachen, Germany, 2005. [7] A. Lubotzky, B. Samuels, and U. Vishne, Division algebras and noncommensurable isospectral manifolds , Duke Math. J. 135 (2006), 361–379. · Zbl 1123.58020 [8] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic \(3\)-Manifolds , Grad. Texts in Math. 219 , Springer, New York, 2003. · Zbl 1025.57001 [9] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds , Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. · Zbl 0124.31202 [10] R. Perlis, On the equation \(\zeta_K(s) = \zeta_K'(s)\) , J. Number Theory 9 (1977), 342–360. · Zbl 0389.12006 [11] G. Prasad and A. S. Rapinchuk, Weakly commensurable arithmetic groups, lengths of closed geodesics and isospectral locally symmetric spaces , preprint,\arxiv0705.2891v4[math.DG] [12] A. W. Reid, Isospectrality and commensurability of arithmetic hyperbolic \(2\)- and \(3\)-manifolds , Duke Math. J. 65 (1992), 215–228. · Zbl 0776.58040 [13] M. Salvai, On the Laplace and complex length spectra of locally symmetric spaces of negative curvature , Math. Nachr. 239 / 240 (2002), 198–203. · Zbl 1006.53033 [14] T. Sunada, Riemannian coverings and isospectral manifolds , Ann. of Math. (2) 121 (1985), 169–186. JSTOR: · Zbl 0585.58047 [15] M.-F. VignéRas, Variétés riemanniennes isospectrales et non isométriques , Ann. of Math. (2) 112 (1980), 21–32. JSTOR: · Zbl 0445.53026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.