Hutchings, Michael; Taubes, Clifford Henry The Weinstein conjecture for stable Hamiltonian structures. (English) Zbl 1169.53065 Geom. Topol. 13, No. 2, 901-941 (2009). Authors’ abstract: We use the equivalence between embedded contact homology and Seiberg-Witten Floer homology to obtain the following improvements on the Weinstein conjecture. Let \(Y\) be a closed oriented connected 3-manifold with a stable Hamiltonian structure, and let \(R\) denote the associated Reeb vector field on \(Y\). We prove that if \(Y\) is not a \(T^2\)-bundle over \(S^1\), then \(R\) has a closed orbit. Along the way we prove that if \(Y\) is a closed oriented connected 3-manifold with a contact form such that all Reeb orbits are nondegenerate and elliptic, then \(Y\) is a lens space. Related arguments show that if \(Y\) is a closed oriented 3-manifold with a contact form such that all Reeb orbits are nondegenerate, and if \(Y\) is not a lens space, then there exist at least three distinct embedded Reeb orbits. Reviewer: Karl Heinz Dovermann (Honolulu) Cited in 2 ReviewsCited in 34 Documents MSC: 53D40 Symplectic aspects of Floer homology and cohomology 57R17 Symplectic and contact topology in high or arbitrary dimension 57R57 Applications of global analysis to structures on manifolds 57R58 Floer homology Keywords:dynamical system; Seiberg-Witten; Floer homology; lens space × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] C Abbas, K Cieliebak, H Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771 · Zbl 1098.53063 · doi:10.4171/CMH/34 [2] F Bourgeois, K Cieliebak, T Ekholm, A note on Reeb dynamics on the tight \(3\)-sphere, J. Mod. Dyn. 1 (2007) 597 · Zbl 1181.57035 · doi:10.3934/jmd.2007.1.597 [3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 · Zbl 1131.53312 · doi:10.2140/gt.2003.7.799 [4] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589 · Zbl 1113.53053 · doi:10.4310/JSG.2005.v3.n4.a5 [5] V Colin, K Honda, Reeb vector fields and open book decompositions · Zbl 1266.57013 [6] D L Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math. 57 (2004) 726 · Zbl 1063.53086 · doi:10.1002/cpa.20018 [7] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge University Press (2008) · Zbl 1153.53002 [8] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 · Zbl 0797.58023 · doi:10.1007/BF01232679 [9] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 · Zbl 0861.58018 [10] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270 · Zbl 0845.57027 · doi:10.1007/BF01895669 [11] H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. \((2)\) 157 (2003) 125 · Zbl 1215.53076 · doi:10.4007/annals.2003.157.125 [12] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Verlag (1994) · Zbl 0805.58003 [13] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313 · Zbl 1017.58005 · doi:10.1007/s100970100041 [14] M Hutchings, The embedded contact homology index revisited, to appear in the Yashafest proceedings · Zbl 1207.57045 [15] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of \(3\)-manifolds, Topology 38 (1999) 861 · Zbl 0959.58015 · doi:10.1016/S0040-9383(98)00044-5 [16] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of \(T^3\), Geom. Topol. 10 (2006) 169 · Zbl 1101.53053 · doi:10.2140/gt.2006.10.169 [17] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43 · Zbl 1157.53047 · doi:10.4310/JSG.2007.v5.n1.a5 [18] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II · Zbl 1193.53183 · doi:10.4310/JSG.2009.v7.n1.a2 [19] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge University Press (2007) · Zbl 1158.57002 [20] A Rechtman, Use and disuse of plugs in foliations, preprint (2008) [21] R Siefring, Intersection theory of punctured pseudoholomorphic curves, in preparation · Zbl 1246.32028 [22] R Siefring, The relative asymptotic behavior of pseudoholomorphic half-cylinders, to appear in Comm. Pure Appl. Math. · Zbl 1158.53068 · doi:10.1002/cpa.20224 [23] C H Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117 · Zbl 1135.57015 · doi:10.2140/gt.2007.11.2117 [24] C H Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology I-IV, preprints (2008) [25] C H Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology V, in preparation · Zbl 1276.57027 · doi:10.2140/gt.2010.14.2961 [26] C Wendl, Punctured holomorphic curves with boundary in \(3\)-manifolds: Fredholm theory and embeddedness, in preparation This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.