zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Best proximity points for cyclic Meir-Keeler contractions. (English) Zbl 1169.54021
Summary: We introduce a notion of cyclic Meir-Keeler contractions and prove a theorem which assures the existence and uniqueness of a best proximity point for cyclic Meir-Keeler contractions. This theorem is a generalization of a recent result due to {\it A. A. Eldred} and {\it P. Veeramani} [J. Math. Anal. Appl. 323, No. 2, 1001--1006 (2006; Zbl 1105.54021)].

54H25Fixed-point and coincidence theorems in topological spaces
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
Full Text: DOI
[1] Ćirić, Lj.B.: A new fixed-point theorem for contractive mappings, Publ. inst. Math. (Beograd) 30, 25-27 (1981) · Zbl 0493.54028
[2] Eldred, A. A.; Kirk, W. A.; Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings, Studia math. 171, 283-293 (2005) · Zbl 1078.47013 · doi:10.4064/sm171-3-5
[3] Eldred, A. A.; Veeramani, P.: Existence and convergence of best proximity points, J. math. Anal. appl. 323, 1001-1006 (2006) · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[4] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory, Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031
[5] Jachymski, J.: Equivalent conditions and the Meir--Keeler type theorems, J. math. Anal. appl. 194, 293-303 (1995) · Zbl 0834.54025 · doi:10.1006/jmaa.1995.1299
[6] Lim, T. C.: On characterizations of Meir--Keeler contractive maps, Nonlinear anal. 46, 113-120 (2001) · Zbl 1009.54044
[7] Matkowski, J.: Fixed point theorems for contractive mappings in metric spaces, Časopis pěst. Mat. 105, 341-344 (1980) · Zbl 0446.54042
[8] Meir, A.; Keeler, E.: A theorem on contraction mappings, J. math. Anal. appl. 28, 326-329 (1969) · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[9] Proinov, P. D.: Fixed point theorems in metric spaces, Nonlinear anal. 64, 546-557 (2006) · Zbl 1101.54046 · doi:10.1016/j.na.2005.04.044
[10] Suzuki, T.: Fixed point theorem for asymptotic contractions of Meir--Keeler type in complete metric spaces, Nonlinear anal. 64, 971-978 (2006) · Zbl 1101.54047 · doi:10.1016/j.na.2005.04.054
[11] Suzuki, T.: Some notes on Meir--Keeler contractions and L-functions, Bull. kyushu inst. Technol. 53, 1-13 (2006) · Zbl 1104.54020