×

Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. (English) Zbl 1169.65004

The Monte Carlo method introduced in this paper gives unbiased and a.s. continuous estimates of the likelihood function of the discrete observations of a diffusion process. The likelihood contribution of each time step is estimated through independent copies of a random function. This function is based on a recently developed retrospective rejection sampling algorithm called the Exact Algorithm. There is no discretization error. Under regularity conditions, the Monte Carlo maximum likelihood estimator converges a.s. to the true maximum likelihood estimator of the unknown parameter. When the datasize \(n\) tends to infinity, the optimal number of Monte Carlo iterations should be tuned as \({\mathcal O}(n^{1/2})\) and the resulting Monte Carlo maximal likelihood estimator converges a.s. to the true parameter value. A numerical illustration of the method is given for the estimation of the three parameters of a logistic growth stochastic differential equation.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
62M05 Markov processes: estimation; hidden Markov models
60J60 Diffusion processes
65C05 Monte Carlo methods
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness

References:

[1] Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 223-262. · Zbl 1104.62323 · doi:10.1111/1468-0262.00274
[2] Andrews, D. W. K. (1987). Consistency in nonlinear econometric models: A generic uniform law of large numbers. Econometrica 55 1465-1471. JSTOR: · Zbl 0646.62101 · doi:10.2307/1913568
[3] Asmussen, S., Glynn, P. and Pitman, J. (1995). Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Probab. 5 875-896. · Zbl 0853.65147 · doi:10.1214/aoap/1177004597
[4] Attouch, H. (1984). Variational Convergence for Functions and Operators . Pitman (Advanced Publishing Program), Boston, MA. · Zbl 0561.49012
[5] Beck, A. (1963). On the strong law of large numbers. In Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961) 21-53. Academic Press, New York. · Zbl 0132.13001
[6] Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2008). A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10 85-104. · Zbl 1152.65013 · doi:10.1007/s11009-007-9060-4
[7] Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12 1077-1098. · Zbl 1129.60073 · doi:10.3150/bj/1165269151
[8] Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 68 1-29. · Zbl 1100.62079 · doi:10.1111/j.1467-9868.2006.00552.x
[9] Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. Ann. Appl. Probab. 15 2422-2444. · Zbl 1101.60060 · doi:10.1214/105051605000000485
[10] Bibby, B. M. and Sørensen, M. (1995). Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1 17-39. · Zbl 0830.62075 · doi:10.2307/3318679
[11] Burke, G. (1965). A uniform ergodic theorem. Ann. Math. Statist. 36 1853-1858. · Zbl 0249.60012 · doi:10.1214/aoms/1177699815
[12] Cappé, O., Douc, R., Moulines, E. and Robert, C. (2002). On the convergence of the Monte Carlo maximum likelihood method for latent variable models. Scand. J. Statist. 29 615-635. · Zbl 1035.62015 · doi:10.1111/1467-9469.00309
[13] Choirat, C., Hess, C. and Seri, R. (2003). A functional version of the Birkhoff ergodic theorem for a normal integrand: A variational approach. Ann. Probab. 31 63-92. · Zbl 1015.60029 · doi:10.1214/aop/1046294304
[14] Devroye, L. (1986). Nonuniform Random Variate Generation . Springer, New York. · Zbl 0593.65005
[15] Dudley, R. M. (1999). Uniform Central Limit Theorems . Cambridge Univ. Press. · Zbl 0951.60033
[16] Durham, G. B. and Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with discussion). J. Bus. Econom. Statist. 20 297-338. JSTOR:
[17] Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69 959-993. JSTOR: · Zbl 1017.62068 · doi:10.1111/1468-0262.00226
[18] Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. J. Bus. Econom. Statist. 19 177-191. JSTOR:
[19] Ferguson, T. S. (1996). A Course in Large Sample Theory . Chapman and Hall, London. · Zbl 0871.62002
[20] Gallant, A. R. and Tauchen, G. (1996). Which moments to match? Econometric Theory 12 657-681. JSTOR: · doi:10.1017/S0266466600006976
[21] Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29 119-151. · Zbl 0770.62070
[22] Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood calculations. J. Roy. Statist. Soc. Ser. B 56 261-274. JSTOR: · Zbl 0784.62019
[23] Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. Roy. Statist. Soc. Ser. B 54 657-699. JSTOR:
[24] Giesy, D. P. (1976). Strong laws of large numbers for independent sequences of Banach space-valued random variables. In Probability in Banach Spaces (Proc. First Internat. Conf., Oberwolfach, 1975) 89-99. Lecture Notes in Math . 526 . Springer, Berlin. · Zbl 0366.60034
[25] Gourieroux, C., Monfort, A. and Renault, E. (1993). Indirect inference. J. Applied Econometrics 8 85-118.
[26] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[27] Kessler, M. and Paredes, S. (2002). Computational aspects related to martingale estimating functions for a discretely observed diffusion. Scand. J. Statist. 29 425-440. · Zbl 1036.62065 · doi:10.1111/1467-9469.00299
[28] Kingman, J. F. C. (1993). Poisson Processes . Oxford Univ. Press, New York. · Zbl 0771.60001
[29] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations . Springer, Berlin. · Zbl 0752.60043
[30] Mourier, E. (1953). Eléments aléatoires dans un espace de Banach. Ann. Inst. H. Poincaré 13 161-244. · Zbl 0053.09503
[31] Øksendal, B. (2003). Stochastic Differential Equations , 6th ed. Springer, Berlin. · Zbl 1025.60026
[32] Pedersen, A. R. (1995). Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1 257-279. · Zbl 0839.62079 · doi:10.2307/3318480
[33] Peskir, G. (2000). From Uniform Laws of Large Numbers to Uniform Ergodic Theorems . Univ. Aarhus, Dept. Mathematics. · Zbl 0992.37004
[34] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C , 2nd ed. Cambridge Univ. Press. · Zbl 0778.65003
[35] Roberts, G. O. and Stramer, O. (2001). On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika 88 603-621. · Zbl 0985.62066 · doi:10.1093/biomet/88.3.603
[36] Shepp, L. A. (1979). The joint density of the maximum and its location for a Wiener process with drift. J. Appl. Probab. 16 423-427. JSTOR: · Zbl 0403.60072 · doi:10.2307/3212910
[37] Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete points in time: A survey. Internat. Statist. Rev. 72 337-354.
[38] Talagrand, M. (1987). The Glivenko-Cantelli problem. Ann. Probab. 15 837-870. · Zbl 0632.60024 · doi:10.1214/aop/1176992069
[39] Tucker, H. G. (1959). A generalization of the Glivenko-Cantelli theorem. Ann. Math. Statist. 30 828-830. · Zbl 0093.14501 · doi:10.1214/aoms/1177706212
[40] Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statistics 20 595-601. · Zbl 0034.22902 · doi:10.1214/aoms/1177729952
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.