Karaboga, Dervis; Akay, Bahriye A comparative study of artificial bee colony algorithm. (English) Zbl 1169.65053 Appl. Math. Comput. 214, No. 1, 108-132 (2009). Summary: The artificial bee colony (ABC) algorithm is one of the most recently introduced swarm-based algorithms. ABC simulates the intelligent foraging behaviour of a honeybee swarm. In this work, ABC is used for optimizing a large set of numerical test functions and the results produced by ABC algorithm are compared with the results obtained by genetic algorithm, particle swarm optimization algorithm, differential evolution algorithm and evolution strategies. Results show that the performance of the ABC is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters. Cited in 135 Documents MSC: 65K05 Numerical mathematical programming methods 90C15 Stochastic programming Keywords:swarm intelligence; evolution strategies; genetic algorithms; differential evolution; particle swarm optimization; artificial bee colony algorithm; unconstrained optimization; numerical examples Software:CIXL2; Genocop; ABC PDF BibTeX XML Cite \textit{D. Karaboga} and \textit{B. Akay}, Appl. Math. Comput. 214, No. 1, 108--132 (2009; Zbl 1169.65053) Full Text: DOI References: [1] Eiben, A. E.; Smith, J. E., Introduction to Evolutionary Computing (2003), Springer · Zbl 1028.68022 [2] Eberhart, R. C.; Shi, Y.; Kennedy, J., Swarm Intelligence (2001), Morgan Kaufmann [3] Holland, J. H., Adaptation in Natural and Artificial Systems (1975), University of Michigan Press: University of Michigan Press Ann Arbor, MI [7] Fogel, L. J.; Owens, A. J.; Walsh, M. J., Artificial Intelligence Through Simulated Evolution (1966), John Wiley & Son: John Wiley & Son New York, NY · Zbl 0148.40701 [9] Storn, R.; Price, K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 341-359 (1997) · Zbl 0888.90135 [10] Price, K.; Storn, R.; Lampinen, A., Differential Evolution a Practical Approach to Global Optimization (2005), Springer Natural Computing Series · Zbl 1186.90004 [11] Bonabeau, E.; Dorigo, M.; Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems (1999), Oxford University Press: Oxford University Press NY · Zbl 1003.68123 [16] Tereshko, V.; Lee, T., How information mapping patterns determine foraging behaviour of a honeybee colony, Open Systems and Information Dynamics, 9, 181-193 (2002) · Zbl 1016.37049 [17] Tereshko, V.; Loengarov, A., Collective decision-making in honeybee foraging dynamics, Computing and Information Systems Journal, 9, 3 (2005) [18] Teodorović, D., Transport modeling by multi-agent systems: a swarm intelligence approach, Transportation Planning and Technology, 26, 4 (2003) [28] Karaboga, D.; Basturk, B.; powerful, A., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, Journal of Global Optimization, 39, 3, 459-471 (2007) · Zbl 1149.90186 [29] Karaboga, D.; Basturk, B., On the performance of artificial bee colony (abc) algorithm, Applied Soft Computing, 8, 1, 687-697 (2008) [33] Karaboga, N., A new design method based on artificial bee colony algorithm for digital iir filters, Journal of The Franklin Institute, 346, 4, 328-348 (2009) · Zbl 1166.93351 [34] Singh, Alok, An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem, Applied Soft Computing, 9, 2, 625-631 (2009) [35] Back, T.; Schwefel, H. P., An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, 1, 1, 1-23 (1993) [36] Yao, X.; Liu, Y., Fast evolution strategies, Control and Cybernetics, 26, 3, 467-496 (1997) · Zbl 0900.93354 [37] Kohonen, T., Self-Organizing Maps (1995), Springer-Verlag: Springer-Verlag New York [38] Milano, M.; Koumoutsakos, P.; Schmidhuber, J., Self-organizing nets for optimization, IEEE Transactions on Neural Networks, 15, 3, 758-765 (2004) [39] Martinetz, T.; Schulten, S., A neural-gas network learns topologies, (Kohonen, K.; etal., Artificial Neural Networks (1991), Elsevier: Elsevier North-Holland, The Netherlands), 397-402 [42] Pham, D. T.; Karaboga, D., Optimum design of fuzzy logic controllers using genetic algorithms, Journal of Systems Engineering, 1, 114-118 (1991) [43] Corne, D.; Dorigo, M.; Glover, F., New Ideas in Optimization (1999), McGraw-Hill [45] Boyer, D. O.; Martfnez, C. H.; Pedrajas, N. G., Crossover operator for evolutionary algorithms based on population features, Journal of Artificial Intelligence Research, 24, 1-48 (2005) · Zbl 1123.62053 [46] Junior, A. D.; Silva, R. S.; Mundim, K. C.; Dardenne, L. E., Performance and parameterization of the algorithm simplified generalized simulated annealing, Genetics and Molecular Biology, 27, 4, 616-622 (2004) [47] Digalakis, J. G.; Margaritis, K. G., An experimental study of benchmarking functions for genetic algorithms, International Journal of Computer Mathematics, 79, 4, 403-416 (2002) · Zbl 1147.68881 [49] Michalewicz, Z.; Janikow, C., Genetic Algorithms+Data Structures=Evolution Programs (1996), Springer-Verlag: Springer-Verlag Newyork This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.