zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A simple direct cosine simplex algorithm. (English) Zbl 1169.65061
Summary: Linear programming (LP) is the core model of constrained optimization. The simplex method (simplex in short) has been proven in practice to perform very well in small- or medium-sized LP problems. A new algorithm called the direct cosine simplex algorithm (DCA) is presented here to improve upon simplex and to solve LP problems. The proposed DCA implements a specific cosine criterion to choose the entering variable instead of the traditional most negative rule used in simplex. Three examples are given to illustrate the implementation of the proposed DCA to improve simplex and to serve as the optimization tool. The utility of the proposed approach is evident from the extensive computational results on test problems adapted from NETLIB. DCA reduced the number of iterations of simplex in most cases in our computational experiment. Preliminary results for medium-sized problems are encouraging.

65K05Mathematical programming (numerical methods)
Full Text: DOI
[1] Dantzig, G. B.: Maximization of a linear function of variables subject to linear inequalities, Activity analysis of production and allocation, 339-347 (1951) · Zbl 0045.09802
[2] Dantzig, G. B.: Linear programming and extensions, (1963) · Zbl 0108.33103
[3] Karmarkar, N.: A new polynomial-time algorithm for linear programming, Combinatorica 4, 373-395 (1984) · Zbl 0684.90062
[4] Vanderbei, R.: Interior-point methods: algorithms and formulations, ORSA J. Comput. 6, No. 32 -- 34, 331 (1994) · Zbl 0800.90697
[5] Gill, P. E.; Murray, W.; Wright, M. H.: Practical optimization, (1981) · Zbl 0503.90062
[6] Hiller, F. S.; Lieberman, G. J.: Introduction to operations research, (1995)
[7] Vanderbei, R.: Linear programming: foundations and extensions, (2001) · Zbl 1043.90002
[8] Bazaraa, M. S.; Jarvis, J. J.; Sherali, H. D.: Linear programming and network flows, (2004) · Zbl 1200.90002
[9] Klee, V.; Minty, G.: How good is the simplex algorithm?, Inequalities -- III, 159-175 (1972) · Zbl 0297.90047
[10] Naylor, B.; Sell, G.: Linear operator theory in engineering and science, (1982) · Zbl 0497.47001
[11] Trigos, F.; Frausto-Solis, J.; Lopez, Rr.: A simplex cosine method for solving the klee-minty cube, Advances in simulation system theory and systems engineering 70X, 27-32 (2002)
[12] M.M. Murshod, B.M. Sarwar, M.A. Sattar, M. Kaykobad, A New Polynomial Algorithm for Linear Programming Problem, NEC Research Institute, 1993.
[13] Stojkovic, N. V.; Stanimirovic, P. S.: Two direct methods in linear programming, Eur. J. Oper. res. 131, 417-439 (2001) · Zbl 0991.90087 · doi:10.1016/S0377-2217(00)00083-7
[14] Junior, H. V.; Lins, M. P. E.: An improved initial basis for the simplex algorithm, Comput. oper. Res. 32, 1983-1993 (2005) · Zbl 1068.90079
[15] Corley, H. W.; Rosenberger, J.; Yeh, W. -C.; Sung, T. K.: The cosine simplex algorithm, Int. J. Adv. manuf. Technol. 27, 1047-1050 (2006)
[16] Bland, R.: New finite pivoting rules for the simplex method, Math. oper. Res. 2, 103-107 (1977) · Zbl 0408.90050 · doi:10.1287/moor.2.2.103
[17] <http://www.netlib.org/lp/data>.