zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry-breaking analysis for the general Helmholtz-Duffing oscillator. (English) Zbl 1169.70309
Summary: The symmetry breaking phenomenon for a general Helmholtz-Duffing oscillator as a function of a symmetric parameter in the nonlinear force is investigated. Different values of this parameter convert the general oscillator into either the Helmholtz or the Duffing oscillator. Due to the variation of the symmetric parameter, the phase space patterns of the unperturbed Helmholtz-Duffing oscillator will cause a huge difference between the left-hand homoclinic orbit and the right-hand one. In particular, the area of the left-hand homoclinic orbits is a strictly monotonously decreasing function, while the area of the right-hand homoclinic orbit varies only in a very small range. There exist distinct local supercritical and subcritical saddle-node bifurcations at two different centers. The left-hand and the right-hand existing regions of the harmonic solutions of the Helmholtz-Duffing oscillator created by the left-hand and the right-hand saddle-node bifurcation curves will lead to different transition in the amplitude-frequency plane. There exists also a critical frequency which has the effect that the left-hand homoclinic bifurcation value is equal to the right-hand homoclinic bifurcation value. And, if the amplitude coefficient of the Helmholtz-Duffing oscillator is used as the control parameter, and it is larger than the same left-hand and right-hand homoclinic bifurcation, then the global stability of the system will be destroyed at a lowest cost. Besides this critical frequency, the left-hand and the right-hand homoclinic bifurcations are not only unequal, but also their effects for the system’s stability are different. Among them, the effect resulting from the small homoclinic bifurcation for the system’s stability is local and negligible, while the effect from the large homoclinic bifurcation is global but this is accomplished at a quite larger cost.

MSC:
70K05Phase plane analysis, limit cycles (general mechanics)
34C15Nonlinear oscillations, coupled oscillators (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Sofroniou, A.; Bishop, S. R.: Breaking the symmetry of the parametrically excited pendulum. Chaos, solitons & fractals 28, 673-681 (2006) · Zbl 1121.70018
[2] Isohätälä, J.; Alekseev, K. N.; Kurki, L. T.; Pietiläinen, P.: Symmetry breaking in a driven and strongly damped pendulum. Phys rev E 71, 066201-066206 (2005)
[3] Bishop, S. R.; Sofroniou, A.; Shi, P.: Symmetry-breaking in the response of the parametrically excited pendulum. Chaos, solitons & fractals 25, 257-264 (2005) · Zbl 1136.70324
[4] Lai, Y. C.: Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems. Phys rev E 53, 4267-4270 (1996)
[5] Yamgoué, S. B.; Kofané, T. C.: Chaotic responses of a deformable system under parametric and external excitations. Chaos, solitons & fractals 17, 155-167 (2003) · Zbl 1055.70010
[6] Abed, E. H.; Varaiya, P. P.: Nonlinear oscillations in power systems. Int J electron power energy syst 6, 37 (1984)
[7] Abed, E. H.; Wang, H. D.; Alexander, J. C.; Hamdan, A. M. A.; Lee, H. C.: Dynamic bifurcations in a power system model exhibiting voltage collapse. Int J bifurcat chaos 3, 1170-1180 (1993) · Zbl 0900.34042
[8] Ajjarapu, V.; Lee, B.: Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. Trans power syst 7, No. 1, 424-431 (1992)
[9] Dobson, I.; Chiang, H. D.: Towards a theory of voltage collapse in electric power systems. Syst control lett 13, 253-262 (1989) · Zbl 0689.93042
[10] Moon, F. C.: Chaotic and fractal dynamics: a introduction for applied scientists and engineers. (1992)
[11] Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear dyn 6, 125-142 (1994)
[12] Litvak-Hinenzon, A.; Rom-Kedar, V.: Symmetry-breaking perturbations and strange attractors. J sound vib 55, 4964-4978 (1997)
[13] Lenci, S.; Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear dynam 33, 71-86 (2003) · Zbl 1038.70019
[14] Lenci, S.; Rega, G.: Global optimal control and system-dependent solutions in the hardening Helmholtz -- Duffing oscillator. Chaos, solitons & fractals 21, 1031-1046 (2004) · Zbl 1060.93527
[15] Almendral, J. A.; Seoane, J.; Sanjuán, M. A. F.: Nonlinear dynamics of the Helmholtz oscillator. Recent res devel sound vib 2, 115-150 (2004)
[16] Almendral, J. A.; Sanjuán, M. A. F.: Integrability and symmetry for the Helmholtz oscillator with friction. J phys A: math gen 36, 695 (2003) · Zbl 1066.70015
[17] Sanjuán, M. A. F.: The effect of nonlinear damping on the universal escape oscillator. Int J bifurcat chaos 9, 735-744 (1999) · Zbl 0977.34041
[18] Metter, E.: Dynamic buckling. Handbook of engineering mechanics (1992)
[19] Bikdash, M.; Balachandran, B.; Nayfeh, A.: Melnikov analysis for a ship with a general roll-damping model. Nonlinear dyn 6, 101-124 (1994)
[20] Yagasaki, K.: Second-order averaging and Melnikov analysis for forced nonlinear oscillators. Nonlinear dyn 190, 587-609 (1996) · Zbl 1232.70030
[21] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1983) · Zbl 0515.34001
[22] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. (1990) · Zbl 0701.58001