×

Continuum interpretation of virial stress in molecular simulations. (English) Zbl 1169.74328

Summary: The equivalence of the virial stress and Cauchy stress is reviewed using both theoretical arguments and numerical simulations. Using thermoelasticity problems as examples, we numerically demonstrate that virial stress is equivalent to the continuum Cauchy stress. Neglecting the velocity terms in the definition of virial stress as many authors have recently suggested, can cause significant errors in interpreting MD simulation results at elevated temperatures (\(T>0\) K).

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74A10 Stress

Software:

DL_POLY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, H. C.: Molecular dynamics simulations at constant pressure and/or temperature, Journal of chemical physics 74, 2384-2393 (1980)
[2] Andia, P. C.; Costanzo, F.; Gray, G. L.: A classical mechanics approach to the determination of the stress & strain response of particle systems, Modelling and simulation in materials science and engineering 14, 741-757 (2006)
[3] Buehler, M.J., 2005. From nano to macro: introduction to atomistic modeling techniques. Lecture Series, Department of Civil and Environmental Engineering, MIT. Available from: <http://web.mit.edu/mbuehler/www/Teaching/LS/lecture_1_nano-macro-buehler.pdf>.
[4] Chen, Y.: Local stress and heat flux in atomistic systems involving three-body forces, Journal of chemical physics 124, 054113 (2006)
[5] Cheung, K. S.; Yip, S.: Atomic-level stress in an inhomogeneous system, Journal of applied physics 70, 5688-5690 (1991)
[6] Clausius, R. J. E.: On a mechanical theorem applicable to heat, Philosophical magazine 40, 122-127 (1870)
[7] Cormier, J.; Rickman, J. M.; Delph, T. J.: Stress calculation in atomistic simulations of perfect and imperfect solids, Journal of applied physics 89, 99-104 (2001)
[8] Daw, M. S.; Foiles, S. M.; Baskes, M. I.: The embedded-atom method: a review of theory and applications, Materials science reports 9, 251-310 (1993)
[9] Dommelen, L.V., 2003. Physical interpretation of the virial stress. Available from: <http://www.eng.fsu.edu/ dommelen/papers/virial/>.
[10] Foiles, S. M.; Baskes, M. I.; Daw, M. S.: Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys, Physical review B 33, 7983-7991 (1986)
[11] Gao, J.; Weiner, J. H.: Excluded-volume effects in rubber elasticity. 1. Virial stress formulation, Macromolecules 20, 2520-2525 (1987)
[12] Gates, T. S.; Odegard, G. M.; Frankland, S. J. V.; Clancy, T. C.: Computational materials: multi-scale modeling and simulation of nanostructured materials, Composites science and technology 65, 2416-2434 (2005)
[13] Girifalco, L. A.: Statistical physics of materials, (1973)
[14] Hardy, R. J.: Formulas for determining local properties in molecular dynamics simulations: shock waves, Journal of chemical physics 76, 622-628 (1981)
[15] Irving, J. H.; Kirkwood, J. G.: The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics, Journal of chemical physics 18, 817-829 (1950)
[16] Kittel, C.: Introduction to solid state physics, (1996) · Zbl 0052.45506
[17] Lee, J. F.; Sears, F. W.; Turcotte, D. L.: Statistical thermodynamics, (1973)
[18] Lu, Q.; Bhattacharya, B.: The role of atomistic simulations in probing the small-scale aspects of fracture – a case study on a single-walled carbon nanotube, Engineering fracture mechanics 72, 2037-2071 (2005)
[19] Lutsko, J. F.: Stress and elastic constants in anisotropic solids: molecular dynamics techniques, Journal of applied physics 64, 1152-1154 (1988)
[20] Marc, G.; Mcmillan, W. G.: The virial theorem, Advances in chemical physics 58, 209 (1985)
[21] Maxwell, J. C.: On reciprocal figures, frames and diagrams of forces, Transactions of the royal society of edinburg 26, 1-43 (1870)
[22] Melchionna, S.; Ciccotti, G.; Holian, B. L.: Hoover NPT dynamics for systems varying in shape and size, Molecular physics 78, 533-544 (1993)
[23] Nosé, S.; Klein, M. L.: Constant pressure molecular dynamics for molecular systems, Molecular physics 50, 1055-1076 (1983)
[24] Parrinello, M.; Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method, Journal of applied physics 52, 7182-7190 (1981)
[25] Plimpton, S. J.: Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics 117, 1-19 (1995) · Zbl 0830.65120
[26] Shen, S.; Atluri, S. N.: Atomic-level stress calculation and continuum-molecular system equivalence, Computer modeling in engineering and sciences 6, 91-104 (2004) · Zbl 1156.74302
[27] Smith, W.: Calculating the pressure, CCP5 information quarterly 39, 14-21 (1993)
[28] Smith, W., Leslie, M., Forester, T.R., 2003. The dl-Poly 2 User Manual, 2.14 ed. Daresbury, Warrington WA4 4AD, England, CCLRC, Daresbury Laboratory.
[29] Sun, Z. H.; Wang, X. X.; Wu, A. K. S.H.A.: On stress calculations in atomistic simulations, Modelling and simulation in materials science and engineering 14, 423-431 (2006)
[30] Swenson, R. J.: Comments on virial theorems for bounded systems, American journal of physics 51, 940-942 (1983)
[31] Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.: Thermophysical properties of matter, thermal expansion: metallic elements and alloys, Thermophysical properties of matter, thermal expansion: metallic elements and alloys 12 (1975)
[32] Tsai, D. H.: The virial theorem and stress calculation in molecular dynamics, Journal of chemical physics 70, 1375-1382 (1979)
[33] Tschopp, M. A.; Spearot, D. E.; Mcdowell, D. L.: Atomistic simulations of homogeneous dislocation nucleation in single crystal copper, Modelling and simulation in materials science and engineering 15, 693-709 (2007)
[34] Zhou, M.: A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proceedings of the royal society of London A 459, 2347-2392 (2003) · Zbl 1060.81062
[35] Zimmerman, J. A.; Iii, E. B. Webb; Hoyt, J. J.; Jones, R. E.; Klein, P. A.; Bammann, D. J.: Calculation of stress in atomistic simulation, Modelling and simulation in materials science and engineering 12, S319-S332 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.