Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme. (English) Zbl 1169.74542

Summary: This paper deals with micromechanical analysis of anisotropic damage and its coupling with friction in quasi brittle materials. The anisotropic model is formulated in the framework of Eshelby-based homogenization methods. The emphasis is put on the study of effects of spatial distribution of microcracks and their interactions. Microcracks closure effects as well as coupling between damage evolution and frictional sliding on closed cracks lips are taken into account. The interaction of sliding and damage evolution is addressed by performing a global thermodynamic analysis on two macroscopic criteria established in the paper. The role of the homogenization scheme is discussed in detail through various applications.


74R05 Brittle damage
74M25 Micromechanics of solids
74E10 Anisotropy in solid mechanics
74M10 Friction in solid mechanics
Full Text: DOI


[1] Andrieux, S.; Bamberger, Y.; Marigo, J. J.: Un modèle de matériau microfissuré pour LES roches et LES bétons, Journal de mécanique théorique et appliquée 5, No. 3, 471-513 (1986) · Zbl 0595.73111
[2] Barthelemy, J. F.; Dormieux, L.; Kondo, D.: Détermination du comportement macroscopique d’un milieu à fissures frottantes, CR mécanique 331, 77-84 (2003) · Zbl 1181.74107 · doi:10.1016/S1631-0721(02)00010-4
[3] Barthelemy, J.F., 2005. Approche micromécanique de la rupture et de la fissuration dans les géomatériaux. PhD thesis, Ecole Nationale des Ponts et Chaussées.
[4] Basista, M.; Gross, D.: The sliding crack model of brittle deformation: an internal variable approach, International journal of solids and structures 35, No. 5 – 6, 487-509 (1998) · Zbl 0930.74047 · doi:10.1016/S0020-7683(97)00031-0
[5] Benveniste, Y.: On the mori – tanaka method in cracked bodies, Mechanics research communications 13, No. 4, 193-201 (1986) · Zbl 0625.73110 · doi:10.1016/0093-6413(86)90018-2
[6] Benveniste, Y.: A new approach to the application of mori – tanaka’s theory in composite materials, Mechanics of materials 6, 147-157 (1987)
[7] Budiansky, B.; O’connell, R. -J.: Elastic moduli of a cracked solid, International journal of solids and structures 12, 81-97 (1976) · Zbl 0318.73065 · doi:10.1016/0020-7683(76)90044-5
[8] Caiazzo, A. A.; Costanzo, F.: On the constitutive relations of materials with evolving microstructure due to microcracking, International journal of solids and structures 37, 3375-3398 (2000) · Zbl 0959.74055 · doi:10.1016/S0020-7683(99)00150-X
[9] Chaboche, J. L.: Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition, International journal of damage mechanics 2, 311-329 (1992)
[10] Chaboche, J. L.: Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage, International journal of damage mechanics 2, 311-329 (1993)
[11] Chow, C. L.; June, W.: An anisotropic theory of elasticity for continuum damage mechanics, International journal of fracture 33, 3-16 (1987)
[12] Deudé, V.; Dormieux, L.; Kondo, D.; Pensée, V.: Propriétés élastiques non linéaires d’un milieu mésofissuré, CR mécanique 330, 587-592 (2002) · Zbl 1177.74322 · doi:10.1016/S1631-0721(02)01489-4
[13] Dormieux, L.; Kondo, D.; Ulm, F. -J.: Microporomechanics, (2006) · Zbl 1112.76002
[14] Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. lond. A 241, 375-396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[15] Eshelby, J. D.: Elastic inclusions and heterogeneities, Progress in solid 2 (1961) · Zbl 0097.17602
[16] Gambarotta, L.; Lagomarsino, S.: A microcrak damage model for brittle materials, International journal of solids and structures 30, No. 2, 177-198 (1993) · Zbl 0775.73196 · doi:10.1016/0020-7683(93)90059-G
[17] Giraud, A.; Gruescu, C.; Do, D. P.; Homand, F.; Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoı¨dal inhomogeneities, International journal of solids and structures 44, No. 9, 2627-2647 (2007) · Zbl 1175.74070 · doi:10.1016/j.ijsolstr.2006.08.011
[18] Halm, D.; Dragon, A.: A model of anisotropic damage by mesocrack growth: unilateral effect, International journal of damage mechanics 5, 384-402 (1996) · Zbl 0920.73321
[19] Halm, D.; Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials, European journal of mechanics A/solids 17, No. 3, 439-460 (1998) · Zbl 0933.74055 · doi:10.1016/S0997-7538(98)80054-5
[20] Horii, H.; Nemat-Nasser, S.: Overall moduli of solids with microcracks: load-induced anisotropy, Journal of the mechanics and physics of solids 31, No. 2, 155-171 (1983) · Zbl 0506.73097 · doi:10.1016/0022-5096(83)90048-0
[21] Ju, J. W.: On energy based coupled elastoplastic damage theories: constitutive modeling and computational aspects, International journal of solids and structures 25, No. 7, 803-833 (1989) · Zbl 0715.73055 · doi:10.1016/0020-7683(89)90015-2
[22] Kachanov, M.: A microcrack model of rock inelasticity – part I: Frictional sliding on microcracks; part II: Propagation of microcraks, Mechanics of materials 1, 19-41 (1982)
[23] Krajcinovic, D.: Damage mechanics, (1996) · Zbl 1075.74071
[24] Kunin, I. A.: An algebra of tensor operators and its applications to elasticity, International journal of engineering science 19, No. 12, 551-1561 (1981) · Zbl 0479.15023 · doi:10.1016/0020-7225(81)90078-1
[25] Lawn, B. R.; Marshall, D. B.: Nonlinear stress – strain curves for solids containing closed cracks with friction, Journal of the mechanics and physics of solids 46, No. 1, 85-113 (1998) · Zbl 0952.74064 · doi:10.1016/S0022-5096(97)00036-7
[26] Lemaitre, J.: A course on damage mechanics, (1992) · Zbl 0756.73002
[27] Marigo, J. -J.: Modeling of brittle and fatigue damage for elastic material by growth of microvoids, Engineering fracture mechanics 21, No. 4, 861-874 (1985)
[28] Mori, T.; Tanaka, K.: Averages stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metall 21, 571-574 (1973)
[29] Mura, T.: Micromechanics of defects in solids, (1987) · Zbl 0652.73010
[30] Murakami, S.; Kamiya, K.: Constitutive and damage evolution equations of elastic brittle materials based on irreversible thermodynamics, International journal of mechanical sciences 39, No. 4, 473-486 (1996) · Zbl 0893.73045 · doi:10.1016/S0020-7403(97)87627-8
[31] Nemat-Nasser, S.; Hori, M.: Elastic solids with microdefects, Micromechanics and inhomogeneity – the toshio mura anniversary volume, 297-320 (1990)
[32] Nemat-Nasser, S.; Hori, M.: Micromechanics: overall properties of heterogeneous materials, (1993) · Zbl 0924.73006
[33] Oda, M.; Takemura, T.; Aoki, T.: Damage growth and permeability change in triaxial compression tests of inada granite, Mechanics of materials 34, 313-331 (2002)
[34] Pensée, V.; Kondo, D.: Une analyse micromécanique 3-D de l’endommagement par méesofissuration, Comptes rendus de l’académie des sciences – série iib – mécanique 329, 271-276 (2001) · Zbl 1058.74015 · doi:10.1016/S1620-7742(01)01320-4
[35] Pensée, V.; Kondo, D.; Dormieux, L.: Micromechanical analysis of anisotropic damage in brittle materials, Journal of engineering mechanics ASCE 128, No. 8, 889-897 (2002)
[36] Pensée, V.; Kondo, D.: Micromechanics of anisotropic brittle damage: comparative analysis between a stress based and a strain based formulation, Mechanics of materials 35, 747-761 (2003)
[37] Ponte-Castaneda, P.; Willis, J. R.: The effect of spatial distribution on the behavior of composite materials and cracked media, Journal of the mechanics and physics of solids 43, 1919-1951 (1995) · Zbl 0919.73061 · doi:10.1016/0022-5096(95)00058-Q
[38] Renaud, V.; Kondo, D.; Henry, J. P.: Computation of effective moduli for microcracked materials: a boundary element approach, Computational materials science 5, 227-237 (1996)
[39] Shao, J. F.; Zhou, H.; Chau, K. T.: Coupling between anisotropic damage and permeability variation in brittle rocks, International journal for numerical and analytical methods in geomechanics 29, 1231-1247 (2005) · Zbl 1140.74509 · doi:10.1002/nag.457
[40] Swoboda, G.; Yang, Q.: An energy-based damage model of geomaterials II: Deduction of damage evolution laws, International journal of solids and structures 36, 1735-1755 (1999) · Zbl 0973.74009 · doi:10.1016/S0020-7683(98)00164-4
[41] Walpole, L.J., 1981. Elastic behavior of composite materials: theoretical foundations. In: Yih, C.S. (Ed.), Advances in Applied Mechanics, vol. 21, pp. 169 – 242. · Zbl 0512.73056 · doi:10.1016/S0065-2156(08)70332-6
[42] Welemane, H.; Cormery, F.: An alternative 3D model for damage induced anisotropy and unilateral effect in microcracked materials, Journal de physique IV 105, 329-338 (2003)
[43] Welemane, H.; Cormery, F.: Some remarks on the damage unilateral effect modelling for microcracked materials, International journal of damage mechanics 11, 65-86 (2002) · Zbl 1094.74539
[44] Zhu, Q.Z., 2006. Applications des approches d’homogénéisation à la modélisation tridimensionnelle de l’endommagement des matériaux quasi fragiles: Formulation, validation et implémentation numérique. Doctoral thesis (in French), University of Lille I, France.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.