zbMATH — the first resource for mathematics

\(L_{p}-L_{q}\) estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle. (English) Zbl 1169.76015
Summary: We consider the motion of a viscous fluid filling the whole three-dimensional space exterior to a rotating obstacle with constant angular velocity. We develop the \(L_{p}-L_{q}\) estimates and the similar estimates in the Lorentz spaces of the Stokes semigroup with rotation effect. We next apply them to the Navier-Stokes equations to prove the global existence of a unique solution which goes to a stationary flow as \(t \rightarrow \infty \) with some definite rates when both the stationary flow and the initial disturbance are sufficiently small in \(L_{3,\infty}\) (weak-\(L_{3}\) space).

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q30 Navier-Stokes equations
76U05 General theory of rotating fluids
Full Text: DOI
[1] Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976) · Zbl 0344.46071
[2] Bogovskii, M. E., Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl., 20, 1094-1098, (1979) · Zbl 0499.35022
[3] Bogovskii, M.E.: Solution of some vector analysis problems connected with operators div and grad (Russian). Trudy Seminar S.L.Sobolev, no. 1, 80, Akademia Nauk SSR, Sibirskoe Otdelenie Matematiki, Nowosibirsk, 5-40, 1980
[4] Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn, 1992
[5] Borchers, W.; Miyakawa, T., Algebraic \(L2\) decay for Navier-Stokes flows in exterior domains, Acta Math., 165, 189-227, (1990) · Zbl 0722.35014
[6] Borchers, W.; Miyakawa, T., On stability of exterior stationary Navier-Stokes flows, Acta Math., 174, 311-382, (1995) · Zbl 0847.35099
[7] Borchers, W.; Sohr, H., On the equations rot \(v = g\) and div \(u = f\) with zero boundary conditions, Hokkaido Math. J., 19, 67-87, (1990) · Zbl 0719.35014
[8] Chen, Z.; Miyakawa, T., Decay properties of weak solutions to a perturbed Navier-Stokes system in \({{\mathbb{R}}^n},\) Adv. Math. Sci. Appl., 7, 741-770, (1997) · Zbl 0893.35092
[9] Cumsille, P.; Tucsnak, M., Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle, Math. Meth. Appl. Sci., 29, 595-623, (2006) · Zbl 1093.76013
[10] Dan, W.; Shibata, Y., On the \(L\_{}\{q\}-L\_{}\{r\)}\) estimates of the Stokes semigroup in a 2-dimensional exterior domain, J. Math. Soc. Jpn., 51, 181-207, (1999) · Zbl 0924.35094
[11] Dan, W.; Shibata, Y., Remark on the \(L\_{}\{q\}-L\_{}\{r\)}\) estimate of the Stokes semigroup in a 2-dimensional exterior domain, Pacific J. Math., 189, 223-239, (1999) · Zbl 0931.35021
[12] Enomoto, Y.; Shibata, Y., Local energy decay of solutions to the Oseen equation in the exterior domains, Indiana Univ. Math. J., 53, 1291-1330, (2004) · Zbl 1088.35048
[13] Enomoto, Y.; Shibata, Y., On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7, 339-367, (2005) · Zbl 1094.35097
[14] Farwig, R., An \(L q\)-analysis of viscous fluid flow past a rotating obstacle, Tohoku Math. J., 58, 129-147, (2006) · Zbl 1136.76340
[15] Farwig, R.; Hishida, T., Stationary Navier-Stokes flow around a rotating obstacle, Funkcial. Ekvac., 50, 371-403, (2007) · Zbl 1180.35408
[16] Farwig, R.; Hishida, T.; Müller, D.\(, L q\)-theory of a singular “winding” integral operator arising from fluid dynamics, Pacific. J. Math., 215, 297-312, (2004) · Zbl 1057.35028
[17] Farwig, R.; Neustupa, J., On the spectrum of a Stokes-type operator arising from flow around a rotating body, Manuscripta Math., 122, 419-437, (2007) · Zbl 1126.35050
[18] Farwig, R.; Sohr, H., Generalized resolvent estimates for the Stokes operator in bounded and unbounded domains, J. Math. Soc. Jpn., 46, 607-643, (1994) · Zbl 0819.35109
[19] Fujiwara, D.; Morimoto, H., An \(L\_{}\{r\}\)-theory of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. Math., 24, 685-700, (1977) · Zbl 0386.35038
[20] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes equations, Vol. I: Linear Steady Problems, Vol. II: Nonlinear Steady Problems. Springer Tracts in Nat. Ph. 38, 39. Springer, New York (1994) 2nd edn. 1998 · Zbl 0949.35004
[21] Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I, 653-791, (Eds. Friedlander S. and Serre D.) North-Holland, Amsterdam, 2002 · Zbl 1230.76016
[22] Galdi, G. P., Steady flow of a Navier-Stokes fluid around a rotating obstacle, J. Elast., 71, 1-31, (2003) · Zbl 1156.76367
[23] Galdi, G. P.; Silvestre, A. L., Strong solutions to the Navier-Stokes equations around a rotating obstacle, Arch. Rational Mech. Anal., 176, 331-350, (2005) · Zbl 1081.35076
[24] Galdi, G. P.; Silvestre, A. L., The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Rational Mech. Anal., 184, 371-400, (2007) · Zbl 1111.76010
[25] Galdi, G. P.; Silvestre, A. L., Existence of time-periodic solutions to the Navier-Stokes equations around a moving body, Pacific J. Math., 223, 251-267, (2006) · Zbl 1109.76016
[26] Geissert, M.; Heck, H.; Hieber, M.\(, L p\)-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596, 45-62, (2006) · Zbl 1102.76015
[27] Geissert, M.; Heck, H.; Hieber, M., On the equation div \(u = g\) and Bogovskiĭ’s operator in Sobolev spaces of negative order, Operator Theory Adv. Appl., 168, 113-121, (2006) · Zbl 1218.35073
[28] Giga, Y., Analyticity of the semigroup generated by the Stokes operator in \(L\_{}\{r\}\) spaces, Math. Z., 178, 297-329, (1981) · Zbl 0473.35064
[29] Hieber, M.; Sawada, O., The Navier-Stokes equations in \({{\mathbb{R}}^n}\) with linearly growing initial data, Arch. Rational Mech. Anal., 175, 269-285, (2005) · Zbl 1072.35144
[30] Hishida, T., An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal., 150, 307-348, (1999) · Zbl 0949.35106
[31] Hishida, T., The Stokes operator with rotation effect in exterior domains, Analysis, 19, 51-67, (1999) · Zbl 0938.35114
[32] Hishida, T.\(, L2\) theory for the operator Δ +\( (k \)×\( x) \)· ∇ in exterior domains, Nihonkai Math. J., 11, 103-135, (2000) · Zbl 1004.35056
[33] Hishida, T.: The nonstationary Stokes and Navier-Stokes flows through an aperture. Contributions to Current Challenges in Mathematical Fluid Mechanics, 79-123, Adv. Math. Fluid Mech. 3, Birkhäuser, Basel, 2004 · Zbl 1096.35103
[34] Hishida, T.\(, L q\) estimates of weak solutions to the stationary Stokes equations around a rotating body, J. Math. Soc. Jpn., 58, 743-767, (2006) · Zbl 1184.35241
[35] Iwashita, H.\(, L\_{}\{q\}-L\_{}\{r\)}\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in \(L\_{}\{q\}\) spaces, Math. Ann., 285, 265-288, (1989) · Zbl 0659.35081
[36] Kobayashi, T.; Shibata, Y., On the Oseen equation in the three-dimensional exterior domains, Math. Ann., 310, 1-45, (1998) · Zbl 0891.35114
[37] Kobayashi, T.; Muramatu, T., Abstract Besov space approach to the non-stationary Navier-Stokes equations, Math. Meth. Appl. Sci., 15, 599-620, (1992) · Zbl 0771.35046
[38] Kozono, H.; Yamazaki, M., Exterior problem for the stationary Navier-Stokes equations in the Lorentz space, Math. Ann., 310, 279-305, (1998) · Zbl 0965.35117
[39] Kozono, H.; Yamazaki, M., On a large class of stable solutions to the Navier-Stokes equations in exterior domains, Math. Z., 228, 751-785, (1998) · Zbl 0922.35119
[40] Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. Dispersive Nonlinear Problems in Mathematical Physics, Quaderni di Matematica, series edited by Dep. Math. II. Univ. di Napoli, Vol. 15, 149-220 (2005) · Zbl 1129.35443
[41] Kubo, T.; Shibata, Y., On the Stokes and Navier-Stokes equations in a perturbed half-space, Adv. Diff. Equ., 10, 695-720, (2005) · Zbl 1105.35079
[42] Ladyzhenskaya O.A.: The mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969) · Zbl 0184.52603
[43] Lions, J.L., Magenes, E.: Problèms aux limites non homogènes et applications. Dunod, Vol. 1, 1968, transl. English: P. Kenneth, Vol. 1. Springer-Grundlehren, 1972
[44] Maremonti, P.; Solonnikov, V. A., On nonstationary Stokes problem in exterior domains, Ann. Sci. Norm. Sup. Pisa, 24, 395-449, (1997) · Zbl 0958.35103
[45] Miyakawa, T., On non-stationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12, 115-140, (1982) · Zbl 0486.35067
[46] Muramatu, T., On Besov spaces of functions defined in general regions, Publ. RIMS Kyoto Univ., 6, 515-543, (1970) · Zbl 0225.46036
[47] Muramatu, T., On imbedding theorems for Besov spaces of functions defined in general regions, Publ. RIMS Kyoto Univ., 7, 261-285, (1971) · Zbl 0236.46034
[48] Muramatu, T., On Besov spaces and Sobolev spaces of generalized functions defined on a general region, Publ. RIMS Kyoto Univ., 9, 325-396, (1974) · Zbl 0287.46046
[49] Noll, A.; Saal, J.\(, H\)∞-calculus for the Stokes operator on \(L\_{}\{q\}\)-spaces, Math. Z., 244, 651-688, (2003) · Zbl 1059.47017
[50] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations . Appl. Math. Sci. 44. Springer, New York (1983) · Zbl 0516.47023
[51] Serre, D., Chute libre d’un solide dans un fluide visqueux incompressible, Existence. Japan J. Appl. Math., 4, 99-110, (1987) · Zbl 0655.76022
[52] Shibata, Y., On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. Math., 7, 1-68, (1983) · Zbl 0524.35071
[53] Shibata, Y.: On some stability theorems about viscous fluid flow. Pubblicato con il contributo dell’E.U.L.O.—Brescia, Quaderno no. 01/03, 2002
[54] Shibata, Y.; Shimizu, S., A decay property of the Fourier transform and its application to the Stokes problem, J. Math. Fluid Mech., 3, 213-230, (2001) · Zbl 1102.35300
[55] Shibata, Y.; Shimizu, S., Decay properties of the Stokes semigroup in exterior domains with Neumann boudanry condition, J. Math. Soc. Jpn., 59, 1-34, (2007) · Zbl 1124.35058
[56] Shibata, Y.; Yamazaki, M., Uniform estimates in the velocity at infinity for stationary solutions to the Navier-Stokes exterior problem, Jpn. J. Math., 31, 225-279, (2005) · Zbl 1152.35459
[57] Silvestre, A. L., On the existence of steady flows of a Navier-Stokes liquid around a moving rigid body, Math. Meth. Appl. Sci., 27, 1399-1409, (2004) · Zbl 1061.35078
[58] Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L q\)-spaces for bounded and exterior domains. Mathematical Problems Relating to the Navier-Stokes Equation, 1-35, G.P. Galdi ed., Advances in Math. Appl. Sci. 11, World Scientific, 1992 · Zbl 0791.35096
[59] Solonnikov, V. A., Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8, 467-529, (1977) · Zbl 0404.35081
[60] Yamazaki, M., The Navier-Stokes equations in the weak-\(L n\) space with time-dependent external force, Math. Ann., 317, 635-675, (2000) · Zbl 0965.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.