Li, Jian; He, Yinnian; Chen, Zhangxin A new stabilized finite element method for the transient Navier-Stokes equations. (English) Zbl 1169.76392 Comput. Methods Appl. Mech. Eng. 197, No. 1-4, 22-35 (2007). Summary: This paper is concerned with the development and analysis of a new stabilized finite element method based on two local Gauss integrations for the two-dimensional transient Navier-Stokes equations by using the lowest equal-order pair of finite elements. This new stabilized finite element method has some prominent features: parameter-free, avoiding higher-order derivatives or edge-based data structures, and stabilization being completely local at the element level. An optimal error estimate for approximate velocity and pressure is obtained by applying the technique of the Galerkin finite element method under certain regularity assumptions on the solution. Compared with other stabilized methods (using the same pair of mixed finite elements) for the two-dimensional transient Navier-Stokes equations through a series of numerical experiments, it is shown that this new stabilized method has better stability and accuracy results. Cited in 85 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs Keywords:Navier-Stokes equations; stabilized finite element method; inf-sup condition; local Gauss integration; error estimate; numerical experiments; stability PDF BibTeX XML Cite \textit{J. Li} et al., Comput. Methods Appl. Mech. Eng. 197, No. 1--4, 22--35 (2007; Zbl 1169.76392) Full Text: DOI OpenURL References: [1] Araya, R.; Barrenechea, G.R.; Valentin, F., Stabilized finite element methods based on multiscale enrichment for the Stokes problem, Numer. math., 44, 322-348, (2006) · Zbl 1121.65116 [2] C. Baiocchi, F. Brezzi, Stabilization of unstable numerical methods, in: Proc. Problemi Attuali Dell. Analisi e Della Fisica Matematica, Taormina, 1992, pp. 59-64. · Zbl 0792.35010 [3] Bochev, P.; Gunzburger, M., An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations, SIAM J. numer. anal., 42, 1189-1207, (2004) · Zbl 1159.76346 [4] Brefort, B.; Ghidaglia, J.M.; Temam, R., Attractor for the penalty navier – stokes equations, SIAM J. math. anal., 19, 1-21, (1988) · Zbl 0696.35131 [5] Brezzi, F.; Douglas, J., Stabilized mixed methods for the Stokes problem, Numer. math., 53, 225-235, (1988) · Zbl 0669.76052 [6] F. Brezzi, J.Pitkäranta, On the stabilisation of finite element approximations of the Stokes problem, in: W. Hackbusch (Ed.), Efficient Solutions of Elliptic systems, 1984, pp.11-19. [7] Buscagliaa, G.C.; Basombrio, F.G.; Codina, R., Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection, Int. J. numer. meth. fluids, 34, 65-92, (2000) · Zbl 0985.76049 [8] Chen, Z., Finite element methods and their applications, (2005), Spring-Verlag Heidelberg [9] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043 [10] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. comp., 52, 495-508, (1989) · Zbl 0669.76051 [11] Falk, R., An analysis of the penalty method and extrapolation for the stationary Stokes equations, (), 66-69 [12] Gerdes, K.; SchöKtza, D., Hp-finite element simulations for Stokes flow- stable and stabilized, Finite elements anal. des., 33, 143-165, (1999) · Zbl 0965.76043 [13] Girault, V.; Raviart, P.A., Finite element method for navier – stokes equations: theory and algorithms, (1987), Springer-Verlag Berlin and Heidelberg · Zbl 0396.65070 [14] Y. He, J. Li, A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations, Appl. Numer. Math., in press. · Zbl 1155.35406 [15] Heywood, J.G.; Rannacher, R., Finite element approximation of the nonstationary navier – stokes problem I: regularity of solutions and second-order error estimates for spatial discretization, SIAM J. numer. anal., 19, 275-311, (1982) · Zbl 0487.76035 [16] Hill, A.T.; Süli, E., Approximation of the global attractor for the incompressible navier – stokes problem, IMA J. numer. anal., 20, 633-667, (2000) · Zbl 0982.76022 [17] Hughes, T.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska – brezzi condition: A stable petrov – galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077 [18] J. Li, Y. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comp. Appl. Math., in press. · Zbl 1132.35436 [19] Li, J.; Mei, L.; He, Y., A pressure-Poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition, Appl. math. comp., 1, 24-35, (2006) · Zbl 1119.65092 [20] Shen, J., On error estimates of the penalty method for unsteady navier – stokes equations, SIAM J. numer. anal., 32, 386-403, (1995) · Zbl 0822.35008 [21] Silvester, D.J., Optimal low-order finite element methods for incompressible flow, Comp. methods appl. mech. engrg., 111, 357-368, (1994) · Zbl 0844.76059 [22] D.J. Silvester, Stabilized mixed finite element methods, numerical analysis Report No. 262, Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester, UK, 1995. [23] Silvester, D.J.; Kechkar, N., Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comp. methods appl. mech. engrg., 79, 71-86, (1990) · Zbl 0706.76075 [24] Smith, B.; Bjorstad, P.; Gropp, W., Domain decomposition, parallel multilevel methods for elliptic partial differential equations, (1996), Cambridge University Press Cambridge · Zbl 0857.65126 [25] Temam, R., Navier – stokes equations, Theory numer. anal., (1983), North-Holland Amsterdam This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.