zbMATH — the first resource for mathematics

A five-equation model for the simulation of interfaces between compressible fluids. (English) Zbl 1169.76407
Summary: A diffuse-interface method is proposed for the simulation of interfaces between compressible fluids with general equations of state, including tabulated laws. The interface is allowed to diffuse on a small number of computational cells and a mixture model is given for this transition region. We write conservation equations for the mass of each fluid and for the total momentum and energy of the mixture and an advection equation for the volume fraction of one of the two fluids. The model needs an additional closure law. We study two different closure laws: isobaric and isothermal. We study the mathematical properties of the resulting models: consistency, hyperbolicity, and existence of a mathematical entropy. We also study the stability of the interfaces with respect to averaging due to the numerical diffusion, a crucial property for the simulation of interface problems by conservative schemes. We show that the isobaric closure is preferable to the isothermal closure with respect to this property. We propose a Roe-type numerical scheme for the simulation of the model and show numerical results for classical test cases.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
Full Text: DOI
[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: A quasi-conservative approach, J. comput. phys., 125, 150, (1996) · Zbl 0847.76060
[2] Abgrall, R., Généralisation du schéma de roe pour le calcul d’écoulements de mélanges de gaz à concentrations variables, Rech. aerospatiale, 6, 31, (1998) · Zbl 0662.76097
[3] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. comput. phys., 169, 594, (2001) · Zbl 1033.76029
[4] Allaire, G.; Kokh, S.; Clerc, S., A 5 equations model for the numerical simulation of interfaces in two-phase flows, C. R. acad. sci. Paris, Sér. I, 331, 1017, (2000) · Zbl 1010.76055
[5] Clerc, S., Accurate computation of contact discontinuities in flows with general equations of state, Comput. meth. appl. math. eng., 178, 245, (1999) · Zbl 0964.76049
[6] Clerc, S., Numerical simulation of the homogeneous equilibrium model for two-phase flows, J. comput. phys., 161, 354, (2000) · Zbl 0965.76051
[7] després, B.; Lagoutière, F., Un schéma non-linéaire anti-dissipatif pour l’équation d’advection linéaire, C. R. acad. sci. Paris, Sér. I, 328, 939, (1999) · Zbl 0944.76053
[8] Glimm, J.; Grove, J.; Li, X.; Tan, D., Robust computational algorithms for dynamic interface tracking in three dimensions, SIAM J. sci. comput., 21, 2240, (2000) · Zbl 0969.76062
[9] Harten, A.; Hyman, J.M., Self adjusting grid methods for one-dimensional hyperbolic conservation laws, J. comput. phys., 50, 235, (1983) · Zbl 0565.65049
[10] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[11] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. comput. phys., 112, 31, (1994) · Zbl 0811.76044
[12] Kokh, S., aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interfaces, (2001), Université Paris 6
[13] S. Kokh and G. Allaire, Numerical simulation of 2d two-phase flows with interface, in Godunov Methods: Theory and Applications, edited by E. F. ToroKluwer Academic/Plenum, Dordrecht/New York, 2001, pp. 513-518. · Zbl 1064.76548
[14] Kokh, S.; Allaire, G.; Clerc, S., Towards boiling crisis simulation: the level set method, Proceedings of the nureth-9, (1999)
[15] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. comput. phys., 113, 134, (1994) · Zbl 0809.76064
[16] Lagoutière, F., modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants, (2000), Université Paris VI
[17] Larrouturou, B., How to preserve the mass fraction positivity when computing compressible multi-component flows, J. comput. phys., 95, 59, (1990) · Zbl 0725.76090
[18] X.-D. Liu, R. Fedkiw, and S. Osher, A quasi-conservative approach to the multiphase euler equations without spurious pressure oscillations, in Advances in Scientific Computing, edited by Z.-C. Shi, M. Mu, W. Xue, and J. ZouScience Press, Beijing/New York, 2001, pp. 106-115.
[19] Massoni, J.; Saurel, R.; Nkonga, B.; Abgrall, R., Proposition de méthodes et modèles eulériens pour LES problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur, Int. J. heat mass transfer, 45, 1287, (2001) · Zbl 1121.76378
[20] Osher, S.; Sethian, J., Front propagating with curvature dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 78, 12, (1988) · Zbl 0659.65132
[21] Osher, S.; Smereka, P., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[22] Quirk, J.J.; Karni, S., On the dynamics of a shock – bubble interaction, J. fluid mech., 318, 129, (1996) · Zbl 0877.76046
[23] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[24] Sainsaulieu, L., Finite volume approximation of two phase-fluid flows based on an appromixate roe-type Riemann solver, J. comput. phys., 121, 1, (1995) · Zbl 0834.76070
[25] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. comput. phys., 150, 425, (1999) · Zbl 0937.76053
[26] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. sci. comput., 21, 1115, (1999) · Zbl 0957.76057
[27] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. rev. fluid mech., 31, 567, (1999)
[28] Sethian, J.A., level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, (1999), Cambridge Univ. Press Cambridge · Zbl 0973.76003
[29] Shyue, K.M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. comput. phys., 142, 208, (1998) · Zbl 0934.76062
[30] Shyue, K.M., A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. comput. phys., 156, 43, (1999) · Zbl 0957.76039
[31] Shyue, K.M., A fluid-mixture type algorithm for compressible multicomponent flow with mie – gruneisen equation of state, J. comput. phys., 171, 678, (2001) · Zbl 1047.76573
[32] Stewart, H.; Wendroff, B., Two-phase flow: models and methods, J. comput. phys., 56, 363, (1984) · Zbl 0596.76103
[33] Unverdi, S.O.; Tryggvason, G., A front tracking method for viscous, incompressible, multifluid flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.