zbMATH — the first resource for mathematics

A dynamical low-rank approach to the chemical master equation. (English) Zbl 1169.92021
Summary: Stochastic reaction kinetics have increasingly been used to study cellular systems, with applications ranging from viral replication to gene regulatory networks and to signaling pathways. The underlying evolution equation, known as the chemical master equation (CME), can rarely be solved with traditional methods due to the huge number of degrees of freedom. We present a new approach to directly solve the CME by a dynamical low-rank approximation based on the Dirac-Frenkel-McLachlan variational principle. The new approach has the capability to substantially reduce the number of degrees of freedom, and to turn the CME into a computationally tractable problem. We illustrate the accuracy and efficiency of our methods in application to two examples of biological interest.

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C37 Cell biology
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI
[1] Alfonsi, A., Cancès, E., Turinici, G., Ventura, B.D., Huisinga, W., 2005. Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. ESAIM Proc. 14, 1–3. · Zbl 1070.92019
[2] Arkin, A.P., Ross, J., McAdams, H.H., 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda\)-infected. Escherichia coli cells. Genetics 149, 1633–648.
[3] Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.-D., 2000. The multiconfiguration time-dependent Hartree method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 324, 1–05. · doi:10.1016/S0370-1573(99)00047-2
[4] Burrage, K., Tian, T., 2004. Poisson Runge–Kutta methods for chemical reaction systems. In: Sun, Y.L.W., Tang, T. (Eds.), Advances in Scientific Computing and Applications, pp. 82–6. Science Press, Beijing/New York.
[5] Burrage, K., Tian, T., Burrage, P., 2004. A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol. 85, 217–34. · Zbl 1048.65004 · doi:10.1016/j.pbiomolbio.2004.01.014
[6] Burrage, K., Hegland, M., MacNamara, S., Sidje, R.B., 2006. A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Langville, A.N., Stewart, W.J. (Eds.), Markov Anniversary Meeting: An International Conference to Celebrate the 150th Anniversary of the Birth of A.A. Markov, pp. 21–8. Boson Books.
[7] Cao, Y., Gillespie, D., Petzold, L., 2005. The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116. · Zbl 1088.80004 · doi:10.1063/1.1824902
[8] Deuflhard, P., Wulkow, M., 1989. Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable. IMPACT Comput. Sci. Eng. 1(3), 269–01. · Zbl 0711.65066 · doi:10.1016/0899-8248(89)90013-X
[9] Deuflhard, P., Huisinga, W., Jahnke, T., Wulkow, M., 2008. Adaptive discrete Galerkin methods applied to the chemical master equation. SIAM J. Sci. Comput, accepted for publication. · Zbl 1178.41003
[10] Elowitz, M.B., Siggia, E.D., Swain, P.S., Levine, A.J., 2002. Stochastic gene expression in a single cell. Science 297, 1183–186. · doi:10.1126/science.1070919
[11] Engblom, S., 2006. A discrete spectral method for the chemical master equation. Technical Report 2006-036, Uppsala University. · Zbl 1103.65011
[12] Gardiner, C.W., 2004. Handbook of Stochastic Methods, 2rd edn. Springer, Berlin. · Zbl 1143.60001
[13] Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–34. · doi:10.1016/0021-9991(76)90041-3
[14] Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–361. · doi:10.1021/j100540a008
[15] Gillespie, D.T., 1992. A rigorous derivation of the chemical master equation. Physica A 188, 404–25. · doi:10.1016/0378-4371(92)90283-V
[16] Gillespie, D.T., 2001. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–733. · doi:10.1063/1.1378322
[17] Goutsias, J., 2005. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 184102. · doi:10.1063/1.1889434
[18] Hairer, E., Lubich, C., Wanner, G., 2006. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin. · Zbl 1094.65125
[19] Haseltine, E.L., Rawlings, J.B., 2002. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–969. · doi:10.1063/1.1505860
[20] Hegland, M., Burden, C., Santoso, L., MacNamara, S., Booth, H., 2007. A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205, 708–24. · Zbl 1121.65009 · doi:10.1016/j.cam.2006.02.053
[21] Jahnke, T., Huisinga, W., 2007. Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 1–6. · Zbl 1113.92032 · doi:10.1007/s00285-006-0034-x
[22] Koch, O., Lubich, C., 2007. Dynamical low rank approximation. SIAM J. Matrix Anal. Appl. 29, 434–54. · Zbl 1145.65031 · doi:10.1137/050639703
[23] Lathauwer, L.D., Moor, B.D., Vandewalle, J., 2000. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–278. · Zbl 0962.15005 · doi:10.1137/S0895479896305696
[24] Liu, W.E.D., Vanden-Eijnden, E., 2005. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 123, 194107. · doi:10.1063/1.2109987
[25] Lubich, C., 2004. A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48(3–4), 355–68. · Zbl 1037.81634 · doi:10.1016/j.apnum.2003.09.001
[26] Lubich, C., 2005. On variational approximations in quantum molecular dynamics. Math. Comput. 74(250), 765–79. · Zbl 1059.81188
[27] MacNamara, S., Burrage, K., Sidje, R.B., 2008. Multiscale modeling of chemical kinetics via the master equation. SIAM J. Multiscale Model. Simul. 6(4), 1146–168. · Zbl 1153.60370 · doi:10.1137/060678154
[28] McAdams, H.H., Arkin, A.P., 1997. Stochastic mechanisms in gene expression. PNAS 94, 814–19. · doi:10.1073/pnas.94.3.814
[29] McAdams, H.H., Arkin, A.P., 1999. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–9. · doi:10.1016/S0168-9525(98)01659-X
[30] Meyer, H.-D., Manthe, U., Cederbaum, L., 1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165, 73–8. · doi:10.1016/0009-2614(90)87014-I
[31] Munsky, B., Khammash, M., 2006. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. · Zbl 1131.82020
[32] Nonnenmacher, A., Lubich, C., 2006. Dynamical low-rank approximation: applications and numerical experiments. Technical report, University of Tübingen. · Zbl 1162.65335
[33] Peles, S., Munsky, B., Khammash, M., 2006. Reduction and solution of the chemical master equation using time-scale separation and finite state projection. J. Chem. Phys. 125(20), 204104. · doi:10.1063/1.2397685
[34] Rao, C.V., Arkin, A.P., 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–010. · doi:10.1063/1.1545446
[35] Raser, J.M., O’Shea, E.K., 2004. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–814. · doi:10.1126/science.1098641
[36] Rathinam, M., Petzold, L., Cao, Y., Gillespie, D., 2003. Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119, 12784–2794. · doi:10.1063/1.1627296
[37] Roussel, M.R., Zhu, R., 2004. Reducing a chemical master equation by invariant manifold methods. J. Chem. Phys. 121, 8716–730. · doi:10.1063/1.1802495
[38] Salis, H., Kaznessis, Y., 2005. Accurate hybrid simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122.
[39] Srivastava, R., You, L., Summers, J., Yin, J., 2002. Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218, 309–21. · doi:10.1006/jtbi.2002.3078
[40] Steuer, R., 2004. Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. J. Theor. Biol. 228, 293–01. · doi:10.1016/j.jtbi.2004.01.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.