zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust control of uncertain systems with polynomial nonlinearity by output feedback. (English) Zbl 1169.93322
Summary: The problem of global robust stabilization by output feedback is investigated for two classes of uncertain systems with polynomial nonlinearity -- one is with controllable/observable linearization and the other is not. The uncertainties in the systems are assumed to be dominated by both lower- and higher-order nonlinearities multiplying by an output-dependent growth rate. There are two ingredients in this study. One is to exploit the idea of how to handle polynomial growth conditions via homogeneity and domination without introducing an observer gain updated law. The other is the development of a recursive design algorithm for the construction of reduced-order observers, which is not only interesting in its own right but also has a valid counterpart, capable of dealing with strongly nonlinear systems, even lack of uniform observability and smooth stabilizability.

93B35Sensitivity (robustness) of control systems
93C10Nonlinear control systems
93C41Control problems with incomplete information
93D21Adaptive or robust stabilization
Full Text: DOI