×

Positive 2D discrete-time linear Lyapunov systems. (English) Zbl 1169.93364

Summary: Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.

MSC:

93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
15B48 Positive matrices and their generalizations; cones of matrices
93D20 Asymptotic stability in control theory
93B03 Attainable sets, reachability
93B07 Observability
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bose, N.K. (1982). Applied Multidimensional System Theory, Van Nostrand Reinhold Co, New York, NY. · Zbl 0574.93031
[2] Bose, N. K, Buchberger, B. and Guiver, J.P. (2003). Multidimensional Systems Theory and Applications, Kluwer Academic Publishers, Dordrecht.
[3] Busłowicz, M. (2006), Stability of positive linear discrete-time systems with unit delay with canonical forms of state matrices, Proceedings of 12-th IEEE International Conference on Methods and Models in Automation and Robotics, Miȩdzyzdroje, Poland.
[4] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems Theory and Applications, Wiley, New York, NY. · Zbl 0988.93002
[5] Fornasini, E. and Marchesini, G. (1976) State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control 21(4): 481-491. · Zbl 0332.93072
[6] Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12: 59-72. · Zbl 0392.93034
[7] Gałkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case, Springer, London. · Zbl 1007.93001
[8] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer, Berlin. · Zbl 0593.93031
[9] Kaczorek, T. (1996). Reachability and controllability of non-negative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410. · Zbl 0888.93009
[10] Kaczorek, T. (1998). Vectors and Matrices in Automation and Electrotechnics, Wydawnictwo Naukowo-Techniczne, Warsaw (in Polish).
[11] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London. · Zbl 1005.68175
[12] Kaczorek, T. (2003). Realizations problem for positive discretetime systems with delays, Systems Science 29(1): 15-29.
[13] Kaczorek, T. (2004). Realization problem for positive 2D systems with delays, Machine Intelligence and Robotic Control 6(2): 61-68.
[14] Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423. · Zbl 1167.93359
[15] Kaczorek, T. (2006a). Minimal positive realizations for discretetime systems with state time-delays, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 25(4): 812-826. · Zbl 1125.93409
[16] Kaczorek, T. (2007b). Positive 2D systems with delays, Proceedings of the 12-th IEEE\IFAC International Conference on Methods in Automation and Robotics, Miȩdzyzdroje, Poland. · Zbl 1293.93378
[17] Kaczorek, T. (2007). Positive discrete-time linear Lyapunov systems, Proceedings of the 15-th Mediterranean Conference of Control and Automation, MED, Athens, Greece. · Zbl 1119.93370
[18] Kaczorek, T. (2008a). Asymptotic stability of positive 2D linear systems, Proceedings of the 13-th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland. · Zbl 1154.93017
[19] Kaczorek, T. (2008b). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing, (in press). · Zbl 1169.93022
[20] Kaczorek, T. (2008c). Asymptotic stability of positive 2D linear systems with delays, Lecture Notes in Electrical Engineering: Numerical Linear Algebra in Signals, Systems and Control, Springer-Verlag.
[21] Kaczorek, T. and Przyborowski, P. (2007a). Positive continuoustime linear Lyapunov systems, Proceedings of the International Conference on Computer as a Tool, EUROCON 2007, Warsaw, Poland, pp. 731-737.
[22] Kaczorek, T. and Przyborowski, P. (2007b). Positive continuoustime linear time-varying Lyapunov systems, Proceedings of the 16-th International Conference on Systems Science, Wrocław, Poland, Vol. I, pp. 140-149.
[23] Kaczorek, T. and Przyborowski, P. (2007c). Continuoustime linear Lyapunov cone-systems, Proceedings of the 13-th IEEE IFAC International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, pp. 225-229.
[24] Kaczorek, T. and Przyborowski, P. (2007d). Positive discretetime linear Lyapunov systems with delays, Przegląd Elektrotechniczny (2): 12-15. · Zbl 1176.93067
[25] Kaczorek, T. and Przyborowski, P. (2007e). Positive linear Lyapunov systems, FNA-ANS International Journal-Problems of Nonlinear Analysis in Engineering Systems 13(2): 35-60. · Zbl 1176.93067
[26] Kaczorek, T. and Przyborowski, P. (2008). Reachability, controllability to zero and observability of the positive discretetime Lyapunov systems, Control and Cybernetics Journal, (submitted). · Zbl 1301.93025
[27] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht. · Zbl 0732.93008
[28] Klamka, J. (1996a). Controllability of 2-D systems, Proceedings of the 3-rd Conference on Methods and Models in Automation and Robotics, Miȩdzyzdroje, Poland, pp. 207-212.
[29] Klamka, J. (1996b). Controllability and minimum energy control of 2-D linear systems, Proceedings of the International Conference on Circuits Systems and Computers, Athens, Greece, Vol. 1, pp. 45-50.
[30] Klamka, J. (1997a). Controllability of infinite-dimensional 2-D linear systems, Advances in Systems Science and Applications 1(1): 537-543.
[31] Klamka, J. (1997b). Controllability of nonlinear 2-D systems, Nonlinear Analysis, Theory, Methods and Applications 30(5): 2963-2968. · Zbl 0896.93005
[32] Klamka, J. (1997c). Controllability of 2-D systems systems: A survey, Applied Mathematics and Computer Science 7(4): 101-120.
[33] Klamka, J. (1997d). Controllability and minimum energy control of 2-D linear systems, Proceedings of the American Control Conference ACC’97, Albuquerque, NM, USA, Vol. 5, pp. 3141-3143.
[34] Klamka, J. (1998a). Constrained controllability of positive 2-D systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 46(1): 95-104. · Zbl 1039.93003
[35] Klamka, J. (1998b). Constrained controllability of 2-D systems, Proceedings of the Symposium on Modelling Analysis and Control, Hammamet, Tunisia. · Zbl 1039.93003
[36] Klamka, J. (1998c). Constrained controllability of linear positive 2-D systems, Proceedings of the 9-th Symposium on Systems, Modelling, Control, SMC-9, Zakopane, Poland. · Zbl 1039.93003
[37] Klamka, J. (1999a). Local controllability of 2-D nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 47(2): 153-161. · Zbl 0941.93005
[38] Klamka, J. (1999b). Controllability of 2-D linear systems, in P.M. Frank , Advances in Control. Highlights of ECC’99, Springer, Berlin, pp. 319-326.
[39] Klamka, J. (1999c). Controllability of 2-D nonlinear systems, Proceedings of the European Control Conference, Karlsruhe, Germany, pp. 1121-1127.
[40] Klamka, J. (2002). Positive controllability of positive dynamical systems, Proceedings of the American Control Conference, Anchorage, AK, USA, (on CD-ROM). · Zbl 1017.93014
[41] Klamka, J. (2005). Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics 43(3): 539-554.
[42] Kurek, J. (1985). The general state-space model for a two-dimensional linear digital systems, IEEE Transactions on Automatic Control 30(6): 600-602. · Zbl 0561.93034
[43] Murty, M.S.N. and Apparao, B.V. (2005). Controllability and observability of Lyapunov systems, Ranchi University Mathematical Journal 32: 55-65. · Zbl 1103.93035
[44] Przyborowski, P. (2008a). Positive fractional discrete-time Lyapunov systems, Archives of Control Sciences 18(LIV)(1): 5-18. · Zbl 1187.93088
[45] Przyborowski, P. (2008b). Fractional discrete-time Lyapunov cone-systems, Przegląd Elektrotechniczny (5): 47-52.
[46] Przyborowski, P. and Kaczorek, T. (2008). Linear Lyapunov cone-systems, in J.M. Ramos Arreguin , Automation and Robotics-New Challenges, I-Tech Education and Publishing, Vienna, (in press).
[47] Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control 20(1): 1-10. · Zbl 0304.68099
[48] Twardy, M. (2007). An LMI approach to checking stability of 2D positive system, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(4): 385-395
[49] Valcher, M.E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions On Circuits and Systems-I 44(7): 602-613. · Zbl 0891.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.