×

On volumes of arithmetic quotients of \(\mathrm{SO}(1,n)\). (English) Zbl 1170.11307

Summary: We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of \(\mathrm{SO}(1,n)\). As a result we prove that for any even dimension \(n\) there exists a unique compact arithmetic hyperbolic \(n\)-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic 4-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic 4-manifold.

MSC:

11E57 Classical groups
22E40 Discrete subgroups of Lie groups
PDF BibTeX XML Cite
Full Text: arXiv EuDML

References:

[1] M. Belolipetsky - W. T. Gan, The mass of unimodular lattices, J. Number Theory, to appear. Zbl1076.11025 MR2167969 · Zbl 1076.11025
[2] A. Borel - G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. MR1019963 · Zbl 0707.11032
[3] N. Bourbaki, “Groups et Algèbres de Lie, chapitres IV, V et VI”, Paris, Hermann, 1968. · Zbl 0186.33001
[4] F. Bruhat - J. Tits, Groupes réductifs sur un corps local, I; II, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251; 60 (1984), 5-184. Zbl0254.14017 MR327923 · Zbl 0254.14017
[5] J. Buchmann - D. Ford - M. Pohst - M. Oliver - F. Diaz y Diaz, Tables of number fields of low degree, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/.
[6] V. I. Chernousov - A. A. Ryzhkov, On the classification of maximal arithmetic subgroups of simply connected groups, Sb. Math. 188 (1997), 1385-1413. Zbl0899.20026 MR1481667 · Zbl 0899.20026
[7] T. Chinburg - E. Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. Zbl0643.57011 MR860679 · Zbl 0643.57011
[8] T. Chinburg - E. Friedman - K. N. Jones - A. W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 1-40. Zbl1008.11015 MR1882023 · Zbl 1008.11015
[9] M. Davis, A hyperbolic \(4\)-manifold, Proc. Amer. Math. Soc. 93 (1985), 325-328. Zbl0533.51015 MR770546 · Zbl 0533.51015
[10] B. Everitt - C. Maclachlan, Constructing hyperbolic manifolds, In: “Computational and geometric aspects of modern algebra (Edinburgh, 1998)”, London Math. Soc. Lecture Note Ser., No. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78-86. Zbl1016.57011 MR1776768 · Zbl 1016.57011
[11] W. T. Gan - J. Hanke - J.-K. Yu, On an exact mass formula of Shimura, Duke Math. J. 107 (2001), 103-133. Zbl1023.11019 MR1815252 · Zbl 1023.11019
[12] G. W. Gibbons, Real tunnelling geometries, Classical Quantum Gravity 15 (1998), 2605-2612. Zbl0935.83016 MR1649661 · Zbl 0935.83016
[13] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287-313. Zbl0904.11014 MR1474159 · Zbl 0904.11014
[14] G. Harder, Halbeinfache Gruppenschemata ber Dedekindringen, Invent. Math. 4 (1967), 165-191. Zbl0158.39502 MR225785 · Zbl 0158.39502
[15] R. Kottwitz, Sign changes in Harmonic Analysis on Reductive Groups, Trans. Amer. Math. Soc. 278 (1983), 289-297. Zbl0538.22010 MR697075 · Zbl 0538.22010
[16] S. Levy (ed.), “The eightfold way. The beauty of Klein’s quartic curve”, Math. Sci. Res. Inst. Publ. 35, Cambridge Univ. Press, Cambridge, 1999. Zbl0991.11032 MR1722410 · Zbl 0991.11032
[17] A. Lubotzky, Lattice of minimal covolume in \(SL_2\): a nonarchimedean analogue of Siegel’s theorem \(\mu \geq \pi /21\), J. Amer. Math. Soc. 3 (1990), 961-975. Zbl0731.22009 MR1070003 · Zbl 0731.22009
[18] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 119-141. Zbl0722.11054 MR1061762 · Zbl 0722.11054
[19] T. Ono, On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279-322. Zbl0166.29802 MR199193 · Zbl 0166.29802
[20] V. P. Platonov, On the maximality problem of arithmetic groups, Soviet Math. Dokl. 12 (1971), 1431-1435. Zbl0252.20050 MR292840 · Zbl 0252.20050
[21] G. Prasad, Volumes of \(S\)-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117. Zbl0695.22005 MR1019962 · Zbl 0695.22005
[22] J. Ratcliffe - S. Tschantz, Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78. Zbl0873.11031 MR1465367 · Zbl 0873.11031
[23] J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann. 244 (1979), 219-231. Zbl0426.20030 MR553253 · Zbl 0426.20030
[24] J.-P. Serre, Cohomologie des groupes discrets, In: “Prospects in mathematics”, Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, 1971, pp. 77-169. Zbl0235.22020 MR385006 · Zbl 0235.22020
[25] J. Tits, Reductive groups over local fields, In: “Automorphic forms, representations and \(L\)-functions”, Proc. Sympos. Pure Math., XXXIII, Part 1, Amer. Math. Soc., Providence, 1979, pp. 29-69. Zbl0415.20035 MR546588 · Zbl 0415.20035
[26] E. B. Vinberg, On groups of unit elements of certain quadratic forms, Math. USSR-Sb. 16 (1972), 17-35. Zbl0252.20054 · Zbl 0252.20054
[27] A. Weil, “Adèles and algebraic groups”, Birkhäuser, Boston, 1982. Zbl0493.14028 MR670072 · Zbl 0493.14028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.