Vaquié, Michel Extensions de valuation et polygone de Newton. (Extensions of a valuation and Newton polygon.) (French. English summary) Zbl 1170.13003 Ann. Inst. Fourier 58, No. 7, 2503-2541 (2008). Let \((K,\nu )\) be a valued field and \(L=K(\theta)\) a finite cyclic extension of \(K\). The aim of this paper is to determine all valuations extending \(\nu\). \(L\) is isomorphic to \(K[x]/(P)\), and any valuation of \(L\) which extends \(\nu \) defines a pseudo-valuation \(\zeta \) on \(K[x]\) whose kernel is the principal ideal \((P)\). The author associates to \(\zeta \) a family of valuations on \(K[x]\), called an admissible family, which is explicitly constructed by augmented valuations and limit augmented valuations. The author gives a necessary and sufficient condition for a valuation of \(K[x]\) to belong to an admissible family associated to a pseudo-valuation \(\zeta \) which corresponds to a valuation of \(L\), this condition depends only on the polynomial \(P\). The author determines all the valuations of \(L\) which extend the valuation \(\nu \) of \(K\). In order to solve this problem the author defines the Newton polygon \({\mathcal PN}(P;\varphi;\mu)\), associated to \(P\), to a polynomial \(\varphi \) and to a valuation \(\mu \) of \(K[x]\). Reviewer: Marcel Morales (Saint-Martin-d’Heres) Cited in 1 ReviewCited in 8 Documents MSC: 13A18 Valuations and their generalizations for commutative rings 12J10 Valued fields 14E15 Global theory and resolution of singularities (algebro-geometric aspects) Keywords:valuation; extension; Newton polygon PDF BibTeX XML Cite \textit{M. Vaquié}, Ann. Inst. Fourier 58, No. 7, 2503--2541 (2008; Zbl 1170.13003) Full Text: DOI Numdam Numdam EuDML OpenURL References: [1] MacLane, S., A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc., 40, 363-395, (1936) · JFM 62.1106.02 [2] MacLane, S., A construction for prime ideals as absolute values of an algebraic field, Duke Math. J., 2, 492-510, (1936) · Zbl 0015.05801 [3] Raynaud, M., Lect. Notes in Math., 169, Anneaux locaux henséliens, (1970), Springer-Verlag, Berlin Heidelberg New-York · Zbl 0203.05102 [4] Vaquié, M., Extension de valuation et famille admise [5] Vaquié, M., Valuations, Resolution of Singularities - A Research Textbook in Tribute to Oscar Zariski, 181, (2000), Birkhäuser Verlag Basel · Zbl 1003.13001 [6] Vaquié, M.; Fr., Soc. Math., Famille admise associée à une valuation de \(K[x],\) Singularités franco-japonaises, 10, (2005) · Zbl 1097.13004 [7] Vaquié, M., Algèbre graduée associée à une valuation de \(K[x],\) Advanced Studies in Pure Mathematics, 46, 259-271, (2007) · Zbl 1127.12009 [8] Vaquié, M., Extension d’une valuation, Trans. Amer. Math. Soc., 359, 3439-3481, (2007) · Zbl 1121.13006 [9] Vaquié, M., Famille admissible de valuations et défaut d’une extension, Jour. of Alg., 311, 859-876, (2007) · Zbl 1121.13007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.