Geck, Meinolf; Hézard, David On the unipotent support of character sheaves. (English) Zbl 1170.20028 Osaka J. Math. 45, No. 3, 819-831 (2008). Let \(G\) be a connected reductive group over \(\mathbb{F}_q\), where the center of \(G\) is connected and both \(q\) and the characteristic \(p\) are large enough. The authors show that under a certain technical condition, treated in the thesis of the second author, the restriction of a character sheaf to its unipotent support (as defined by Lusztig) is either zero or an irreducible local system. As an application the generalized Gelfand-Graev characters are shown to form a \(\mathbb{Z}\)-basis of the \(\mathbb{Z}\)-module of unipotently supported virtual characters of \(G(\mathbb{F}_q)\) (Kawanaka’s conjecture). Reviewer: Wilberd van der Kallen (Utrecht) Cited in 10 Documents MSC: 20G05 Representation theory for linear algebraic groups 20G40 Linear algebraic groups over finite fields Keywords:connected reductive groups; character sheaves; unipotent support; generalized Gelfand-Graev characters; Springer correspondence; irreducible local systems; virtual characters PDFBibTeX XMLCite \textit{M. Geck} and \textit{D. Hézard}, Osaka J. Math. 45, No. 3, 819--831 (2008; Zbl 1170.20028) Full Text: arXiv Euclid References: [1] D.I. Deriziotis: The centralizers of semisimple elements of the Chevalley groups \(E_{7}\) and \(E_{8}\) , Tokyo J. Math. 6 (1983), 191-216. · Zbl 0534.20031 · doi:10.3836/tjm/1270214335 [2] D.I. Deriziotis: Conjugacy Classes and Centralizers of Semisimple Elements in Finite Groups of Lie Type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen 11 , Univ. Essen, Essen, 1984. · Zbl 0574.20035 [3] M. Geck: Basic sets of Brauer characters of finite groups of Lie type , III, Manuscripta Math. 85 (1994), 195-216. · Zbl 0820.20018 · doi:10.1007/BF02568193 [4] M. Geck: Character sheaves and generalized Gelfand-Graev characters , Proc. London Math. Soc. (3) 78 (1999), 139-166. · Zbl 1035.20011 · doi:10.1112/S0024611599001641 [5] M. Geck and G. Malle: On the existence of a unipotent support for the irreducible characters of a finite group of Lie type , Trans. Amer. Math. Soc. 352 (2000), 429-456. JSTOR: · Zbl 0940.20019 · doi:10.1090/S0002-9947-99-02210-2 [6] D. Hézard: Sur le support unipotent des faisceaux-caractères , Ph.D. Thesis, Université Lyon 1, 2004, available at “thesis-ON-line” http://tel.ccsd.cnrs.fr/tel-00012071. [7] N. Kawanaka: Generalized Gelfand-Graev representations and Ennola duality ; in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6 , Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985, 175-206. · Zbl 0573.20038 [8] N. Kawanaka: Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field , I, Invent. Math. 84 (1986), 575-616. · Zbl 0596.20028 · doi:10.1007/BF01388748 [9] N. Kawanaka: Shintani lifting and Gelfand-Graev representations ; in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47 , Amer. Math. Soc., Providence, RI, 1987, 147-163. · Zbl 0654.20046 [10] G. Lusztig: Characters of Reductive Groups Over a Finite Field, Ann. of Math. Stud. 107 , Princeton Univ. Press, Princeton, NJ, 1984. · Zbl 0556.20033 [11] G. Lusztig: Intersection cohomology complexes on a reductive group , Invent. Math. 75 (1984), 205-272. · Zbl 0547.20032 · doi:10.1007/BF01388564 [12] G. Lusztig: Character sheaves , Adv. in Math. 56 (1985), 193-237, II, 57 (1985), 226-265, III, 57 (1985), 266-315, IV, 59 (1986), 1-63, V, 61 (1986), 103-155. · Zbl 0602.20035 · doi:10.1016/0001-8708(86)90036-8 [13] G. Lusztig: On the character values of finite Chevalley groups at unipotent elements , J. Algebra 104 (1986), 146-194. · Zbl 0603.20037 · doi:10.1016/0021-8693(86)90245-0 [14] G. Lusztig: A unipotent support for irreducible representations , Adv. Math. 94 (1992), 139-179. · Zbl 0789.20042 · doi:10.1016/0001-8708(92)90035-J [15] G. Lusztig: Character sheaves and generalizations ; in The Unity of Mathematics, Progr. Math. 244 , Birkhäuser, Boston, Boston, MA, 2006, 443-455. · Zbl 1105.20042 · doi:10.1007/0-8176-4467-9_12 [16] G. Lusztig: Unipotent classes and special Weyl group representations , preprint (November 2007), available at · Zbl 1234.20055 · doi:10.1016/j.jalgebra.2008.04.004 [17] T. Shoji: Character sheaves and almost characters of reductive groups , I, II, Adv. Math. 111 (1995), 244-313, 314-354. · Zbl 0832.20065 · doi:10.1006/aima.1995.1024 [18] N. Spaltenstein: On the generalized Springer correspondence for exceptional groups ; in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6 , Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985, 317-338. · Zbl 0574.20029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.