Brin, Matthew G. The algebra of strand splitting. II: A presentation for the braid group on one strand. (English) Zbl 1170.20306 Int. J. Algebra Comput. 16, No. 1, 203-219 (2006). Cited in 2 ReviewsCited in 11 Documents MSC: 20F05 Generators, relations, and presentations of groups 20F65 Geometric group theory 20F36 Braid groups; Artin groups 20F55 Reflection and Coxeter groups (group-theoretic aspects) 57S25 Groups acting on specific manifolds Keywords:Thompson groups; braid groups; Artin groups; finitely presented groups; normal form theorems; finite presentations; monoidal categories; braided tensor categories; braided versions PDF BibTeX XML Cite \textit{M. G. Brin}, Int. J. Algebra Comput. 16, No. 1, 203--219 (2006; Zbl 1170.20306) Full Text: DOI arXiv References: [1] DOI: 10.2307/2000932 · Zbl 0707.03053 · doi:10.2307/2000932 [2] DOI: 10.1081/AGB-200047404 · Zbl 1078.20062 · doi:10.1081/AGB-200047404 [3] DOI: 10.1006/jabr.1997.7315 · Zbl 0930.20039 · doi:10.1006/jabr.1997.7315 [4] Cannon J. W., Enseign. Math. (2) 42 pp 215– [5] DOI: 10.1016/S0049-237X(08)71348-X · doi:10.1016/S0049-237X(08)71348-X [6] Thompson R. J., Polish Acad. Sci. Inst. Philos. Sociol. Bull. Sect. Logic 17 pp 75– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.