zbMATH — the first resource for mathematics

The extended future tube conjecture for \(SO(1,n)\). (English) Zbl 1170.32300
Summary: Let \(C\) be the open upper light cone in \(\mathbb{R}^{1+n}\) with respect to the Lorentz product. The connected linear Lorentz group \(\text{SO}_\mathbb{R}(1,n)^0\) acts on \(C\) and therefore diagonally on the \(N\)-fold product \(T_N\) where \(T=\mathbb{R}^{1+n}+iC\subset \mathbb{C}^{1+n}\). We prove that the extended future tube \(\text{SO}_\mathbb{C}(1,n)\cdot T^N\) is a domain of holomorphy.
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32D05 Domains of holomorphy
32M05 Complex Lie groups, group actions on complex spaces
Full Text: EuDML
[1] R. Bremigan, Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. Zbl0867.22004 MR1424446 · Zbl 0867.22004 · doi:10.1007/BF02549210
[2] J. Faraut - A. Koranyi, “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. Zbl0841.43002 MR1446489 · Zbl 0841.43002
[3] D. Hall - A. D. Wightman, A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. Zbl0078.44302 · Zbl 0078.44302
[4] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. Zbl0728.32010 MR1103041 · Zbl 0728.32010 · doi:10.1007/BF01446594 · eudml:164803
[5] P. Heinzner, The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. Zbl0939.32021 MR1620612 · Zbl 0939.32021 · eudml:224363
[6] P. Heinzner - A. T. Huckleberry - F. Loose, Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. Zbl0803.53042 MR1293876 · Zbl 0803.53042 · crelle:GDZPPN002212013 · eudml:153656
[7] P. Heinzner - L. Migliorini - M. Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. Zbl0922.32017 MR1631577 · Zbl 0922.32017 · numdam:ASNSP_1998_4_26_2_233_0 · eudml:84327
[8] R. Jost, The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. Zbl0127.19105 MR177667 · Zbl 0127.19105
[9] H. Kraft, Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. Zbl0569.14003 MR768181 · Zbl 0569.14003
[10] R. Narasimhan, The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. Zbl0131.30801 MR182747 · Zbl 0131.30801 · doi:10.1007/BF01470950 · eudml:160929
[11] A. G. Sergeev - V. S. Vladimirov, Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179-253. Zbl0787.32001 · Zbl 0787.32001
[12] R. F. Streater - A. S. Wightman, “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. Zbl0135.44305 MR161603 · Zbl 0135.44305
[13] A. S. Wightman, Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. Zbl0105.22101 MR149854 · Zbl 0105.22101
[14] X. Y. Zhou, A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. Zbl0922.32007 MR1622270 · Zbl 0922.32007 · doi:10.1070/im1998v062n01ABEH000185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.