zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-range-dependent stabilization of uncertain dynamic systems with interval time-varying delays. (English) Zbl 1170.34054
Linear continuous-time control systems with variable coefficients and variable point delay in the state variables are considered. It is generally assumed that the system matrices are known with some uncertainties. Using Lyapunov functionals and linear matrix inequality, sufficient conditions for feedback stabilizability are formulated and proved. Simple numerical examples, which illustrate theoretical considerations are presented. Moreover, many remarks and comments on stabilization problems for delayed control systems are given. The relationships to the results existing in the literature are mentioned and discussed. Finally, it should be pointed out, that similar stabilization problems have been recently considered in the papers [{\it J. H. Park} and {\it O. Kwon}, Appl. Math. Comput. 162, No. 2, 627--637 (2005; Zbl 1077.34075)] and [{\it P. G. Park} and {\it J. W. Ko}, Stability and robust stability for systems with a time-varying delay. Automatica 43, No. 10, 1855--1858 (2007; Zbl 1120.93043)].

34K35Functional-differential equations connected with control problems
93C05Linear control systems
93C23Systems governed by functional-differential equations
93D09Robust stability of control systems
93D15Stabilization of systems by feedback
34K06Linear functional-differential equations
LMI toolbox
Full Text: DOI
[1] Hale, J.; Lunel, S. M. V.: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[2] Niculescu, S. I.: Delay effects on stability: a robust approach, Lecture notes in control and information sciences 2 (2002)
[3] Richard, J. P.: Time-delay systems: an overview of some recent advances and open problems, Automatica 39, 1667-1694 (2003) · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[4] Park, Ju H.; Kwon, O. M.: On new stability criterion for delay-differential systems of neutral type, Applied mathematics and computations 162, 627-637 (2005) · Zbl 1077.34075 · doi:10.1016/j.amc.2004.01.001
[5] Xu, S.; Lam, J.; Zou, Y.: Further results on delay-dependent robust stability conditions of uncertain neutral systems, International journal of robust and nonlinear control 15, 233-246 (2005) · Zbl 1078.93055 · doi:10.1002/rnc.983
[6] T. Li, L. Guo, Y. Zhang, Delay-range-dependent robust stability and stabilization for uncertain systems with time-varying delay, International Journal of Robust and Nonlinear Control doi:10.1002/rnc.1280, 2007. · Zbl 1298.93263
[7] Park, P. G.; Ko, J. W.: Stability and robust stability for systems with a time-varying delay, Automatica 43, 738-743 (2007) · Zbl 1120.93043 · doi:10.1016/j.automatica.2007.02.022
[8] Park, P. G.: A delay-dependent stability criterion for systems with uncertain linear state-delayed systems0, IEEE transactions on automatic control 35, 876-877 (1999) · Zbl 0957.34069 · doi:10.1109/9.754838
[9] Moon, Y. S.; Park, P. G.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, International journal of control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[10] Fridman, E.; Shaked, U.: An improved stabilization method for linear time-delay systems, IEEE transactions on automatic control 47, 1931-1937 (2002)
[11] Fridman, E.; Shaked, U.: Delay dependent stability and H$\infty $ control: constant and time-varying delays, International journal of control 76, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[12] Yue, D.; Won, S.; Kwon, O.: Delay dependent stability of neutral systems with time delay: an LMI approach, IEEE Proceedings -- control theory and applications 150, 23-27 (2003)
[13] Kwon, O. M.; Park, J. H.: On improved delay-dependent robust control for uncertain time-delay systems, IEEE transactions on automatic control 49, 1991-1995 (2004)
[14] Xu, S.; Lam, J.: Improved delay-dependent stability criteria for time-delay systems, IEEE transactions on automatic control 50, 384-387 (2005)
[15] Parlak&lcedil, M. N. A.; I: Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems, International journal of robust and nonlinear control 16, 599-636 (2006) · Zbl 1128.93380
[16] Parlak&lcedil, M. N. A.; I: Robust stability of uncertain time-varying state-delayed systems, IEE Proceedings -- control theory and applications 153, 469-477 (2006)
[17] O.M. Kwon, Ju H. Park, S.M. Lee, On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Applied Mathematics and Computation 197 (2008) 864 -- 873. · Zbl 1144.34052 · doi:10.1016/j.amc.2007.08.048
[18] Knospe, C. R.; Roozbehani, M.: Stability of linear systems with interval time delay excluding zero, IEEE transactions on automatic control 51, 1271-1288 (2006)
[19] Yu, K. W.; Lien, C. H.: Stability criteria for uncertain neutral systems with interval time-varying delay, Chaos solitons & fractals 36, 920-927 (2008) · Zbl 1139.93354
[20] Yue, D.; Peng, C.; Tang, G. Y.: Guaranteed cost control of linear systems over networks with state and input quantisation, IEEE Proceedings -- control theory and applications 153, 658-664 (2006)
[21] Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishanan, V.: Linear matrix inequalities in system and control theory, Studies in applied mathematics 15 (1994) · Zbl 0816.93004
[22] K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of 39th IEEE Conference on Decision Control, Sydney, Australia, 2000, pp. 2805 -- 2810.
[23] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox, (1995)
[24] Park, H. S.; Kim, Y. H.; Kim, D. S.; Kwon, W. H.: A scheduling method for networked based control systems, IEEE transactions on control systems technology 10, 318-330 (2002)
[25] Kim, D. S.; Lee, Y. S.; Kwon, W. H.; Park, H. S.: Maximum allowable delay bounds of networked control systems, Control engineering practice 11, 1301-1313 (2003)
[26] Yue, D.; Han, Q. L.; Peng, C.: State feedback controller design of networked control systems, IEEE transactions on circuits and systems-II: express briefs 51, 640-644 (2004)