zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms. (English) Zbl 1170.35085
Summary: The bell type solitary wave solution, the kink type solitary wave solution, the algebraic solitary wave solution and the sinusoidal traveling wave solution of a generalized KdV-mKdV equation (GKdV-mKdV) with high-order nonlinear terms are obtained by a subsidiary ordinary differential equation method (sub-ODE method for short). The key ideas of the sub-ODE method are that the traveling wave solutions of a complicated nonlinear wave equation can be constructed by means of the solutions of some simple and solvable ODEs which are called sub-ODEs.

35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
34A05Methods of solution of ODE
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering transform. (1991) · Zbl 0762.35001
[2] Hirota, R.: J. math. Phys.. 14, 810 (1973)
[3] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 289, 69 (2001)
[4] Yan, Z. Y.: Chaos solitons fractals. 18, 299 (2003)
[5] Wang, M. L.: Phys. lett. A. 199, 169 (1995)
[6] Wang, M. L.: Phys. lett. A. 213, 279 (1996)
[7] Parkes, E. J.; Duffy, B. R.: Comput. phys. Commun.. 98, 288 (1996)
[8] Li, Z. B.; Liu, Y. P.: Comput. phys. Commun.. 148, 256 (2002)
[9] Fan, E. G.: Phys. lett. A. 277, 212 (2000)
[10] Yan, Z. Y.: Phys. lett. A. 292, 100 (2001)
[11] Li, B.; Chen, Y.; Zhang, H. Q.: Chaos solitons fractals. 15, 647 (2003)
[12] Yomba, E.: Chaos solitons fractals. 20, 1135 (2004)
[13] Sirendaoreji; Jiong, S.: Phys. lett. A. 309, 387 (2003)
[14] Xu, G. Q.; Li, Z. B.: Chaos solitons fractals. 24, 549 (2004)
[15] Yomba, E.: Phys. lett. A. 336, 463 (2005)
[16] Wang, M. L.; Zhou, Y. B.: Phys. lett. A. 318, 84 (2003)
[17] Zhou, Y. B.; Wang, M. L.; Wang, Y. M.: Phys. lett. A. 308, 31 (2003)
[18] Wang, M. L.; Li, X. Z.: Chaos solitons fractals. 24, 1257 (2005)
[19] Li, X. Y.; Yang, S.; Wang, M. L.: Chaos solitons fractals. 25, 629 (2005)
[20] Li, X. Z.; Zhang, J. L.; Wang, Y. M.: Acta phys. Sinica. 53, 4045 (2004)
[21] Wadati, M.: J. phys. Soc. jpn.. 38, 673 (1975)