zbMATH — the first resource for mathematics

Families of differential forms on complex spaces. (English) Zbl 1170.35358
Summary: On every reduced complex space \(X\) we construct a family of complexes of soft sheaves \(\Omega_X\); each of them is a resolution of the constant sheaf \(\mathbb{C}_X\) and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of \(X\). The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

35C15 Integral representations of solutions to PDEs
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
Full Text: EuDML
[1] D. Arapura, “Building mixed Hodge structures, The arithmetic and geometry of algebraic cycles”, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000. Zbl0973.14004 MR1736874 · Zbl 0973.14004
[2] V. Ancona - B. Gaveau, Le complexe de De Rham d’un espace analytique normal, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 577-581. Zbl0784.32012 MR1181295 · Zbl 0784.32012
[3] V. Ancona - B. Gaveau, Intégrales de formes différentielles et théorèmes de De Rham sur un espace analytique, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 65-70. Zbl0789.32006 MR1228967 · Zbl 0789.32006
[4] V. Ancona - B. Gaveau, Théorèmes de De Rham sur un espace analytique, Rev. Roumaine de Math. Pures appl. 38 (1993), 579-594. Zbl0810.32009 MR1263205 · Zbl 0810.32009
[5] V. Ancona - B. Gaveau, The De Rham complex of a reduced complex space, In: “Contribution to complex analysis and analytic geometry”, H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994. Zbl0827.32005 MR1319343 · Zbl 0827.32005
[6] V. Ancona - B. Gaveau, Théorie de Hodge et complexe de De Rham holomorphe pour certains espaces analytiques, Bull. Sci. Math. 122 (1998), 163-201. Zbl0928.32004 MR1621580 · Zbl 0928.32004
[7] V. Ancona - B. Gaveau, Suites spectrales, formes holomorphes et théorie de Hodge de certains espaces analytiques, “Proceedings of Coimbra conference on Partial differential equations and Mathematical Physics” J. Vaillant and J. Carvalho e Silva (eds.), Textos Mat. Ser. B, 24 (2000), 1-14. Zbl1115.32301 · Zbl 1115.32301
[8] V. Ancona - B. Gaveau, Differential forms, integration and Hodge theory on complex analytic spaces, Preprint 2001. · Zbl 1071.58001
[9] T. Bloom - M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. Zbl0175.37301 MR248349 · Zbl 0175.37301
[10] J. Carlson, Polyhedral resolutions of algebraic varieties, Trans. Amer. Math. Soc. 292 (1985), 595-612. Zbl0602.14012 MR808740 · Zbl 0602.14012
[11] P. Deligne, Théorie de Hodge II et III, Publ. Math. IHES 40 (1971), 5-58 et 44 (1974), 5-77. Zbl0237.14003 MR498551 · Zbl 0237.14003
[12] F. Elzein, Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. Zbl0511.14003 MR678337 · Zbl 0511.14003
[13] H. Grauert - H. Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. Zbl0118.30401 MR170354 · Zbl 0118.30401
[14] F. Guillèn - V. Navarro Aznar - P. Pascual Gainza - P. Puertas, “Théorie de Hodge via schémas cubiques, Notes polycopiées”, Univ. Politecnica de Catalunya, 1982.
[15] F. Guillèn - V. Navarro Aznar - P. Pascual Gainza - P. Puertas, Hyperrésolutions cubiques et descente cohomologique, Lecture notes in Math. 1335, Springer, 1988. Zbl0638.00011 · Zbl 0638.00011
[16] P. Griffiths - W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, “Proceedings of the International Colloquium on Discrete subgroups of Lie groups”, (Bombay, 1973), Oxford University Press, 1975. Zbl0355.14003 MR419850 · Zbl 0355.14003
[17] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. Zbl0199.41203 MR125984 · Zbl 0199.41203
[18] H. J. Reiffen, Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Z. 101 (1964), 269-284. Zbl0164.09401 MR223599 · Zbl 0164.09401
[19] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269-331. Zbl0374.57002 MR646078 · Zbl 0374.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.