×

zbMATH — the first resource for mathematics

Concentration phenomena of two-vortex solutions in a Chern-Simons model. (English) Zbl 1170.35413
Summary: By considering an Abelian Chern-Simons model, we are led to study the existence of solutions of the Liouville equation with singularities on a flat torus. A non-existence and degree counting for solutions are obtained. The former result has an application in the Chern-Simons model.

MSC:
35J60 Nonlinear elliptic equations
58E11 Critical metrics
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] L. Ahlfors, “Complex analysis”, 2nd edition, McGraw-Hill Book Co., New York, 1966. Zbl0395.30001 MR510197 · Zbl 0395.30001
[2] D. Bartolucci - G. Tarantello, Liouville type equations with singular data and their application to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002), 3-47. Zbl1009.58011 MR1917672 · Zbl 1009.58011 · doi:10.1007/s002200200664
[3] H. Brezis - F. Merle, Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x) e^{u}\) in two dimensions, Comm. Partial Differential Equation 16 (1991), 1223-1253. Zbl0746.35006 MR1132783 · Zbl 0746.35006 · doi:10.1080/03605309108820797
[4] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 321-347. Zbl0635.53047 MR955072 · Zbl 0635.53047
[5] L. Caffarelli - Y. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), 321-336. Zbl0846.58063 MR1324400 · Zbl 0846.58063 · doi:10.1007/BF02101552
[6] E. Caglioti - P. L. Lions - C. Marchioro - M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525. Zbl0745.76001 MR1145596 · Zbl 0745.76001 · doi:10.1007/BF02099262
[7] H. Chan - C. C. Fu - C. S. Lin, Non-topological multivortex solutions to the self-dual Chern-Simons-Higgs equations, Comm. Math. Phys. 231 (2002), 189-221. Zbl1018.58008 MR1946331 · Zbl 1018.58008 · doi:10.1007/s00220-002-0691-6
[8] S. Chanillo - M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), 217-238. Zbl0821.35044 MR1262195 · Zbl 0821.35044 · doi:10.1007/BF02103274
[9] S. Y. Chang - P. Yang, Prescribing Gaussian curvature on \(S^2\), Acta Math. 159 (1987), 215-259. Zbl0636.53053 MR908146 · Zbl 0636.53053 · doi:10.1007/BF02392560
[10] C. C. Chen - C. S. Lin, On the symmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 271-296. Zbl0995.35004 MR1831657 · Zbl 0995.35004 · doi:10.1016/S0294-1449(00)00060-3 · numdam:AIHPC_2001__18_3_271_0 · eudml:78521
[11] C. C. Chen - C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 4 (2002), 728-771. Zbl1040.53046 MR1885666 · Zbl 1040.53046 · doi:10.1002/cpa.3014
[12] C. C. Chen and C. S. Lin, Topological Degree for a Mean Field Equation on Riemann Surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1707. Zbl1032.58010 MR2001443 · Zbl 1032.58010 · doi:10.1002/cpa.10107
[13] K. S. Chou - Tom Y. H. Wan, Asymptotic radial symmetry for solutions of \(\Delta u+e^u=0\) in a punctured disc, Pacific J. Math. 163 (1994), 269-276. Zbl0794.35049 MR1262297 · Zbl 0794.35049 · doi:10.2140/pjm.1994.163.269
[14] W. Ding - J. Jost - J. Li - G. Wang, Multiplicity results of two-vortex Chern-Simons-Higgs model on the two-sphere, Comm. Math. Helv. 74 (1999), 118-142. Zbl0913.53032 MR1677094 · Zbl 0913.53032 · doi:10.1007/s000140050079
[15] W. Ding - J. Jost - J. Li - G. Wang, The differential equation of \(\Delta u=8\pi - 8\pi he^u\) on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248. Zbl0955.58010 MR1491984 · Zbl 0955.58010
[16] W. Ding - J. Jost - J. Li - X. Peng - G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functional with 6th order potenliatls, Comm. Math. Phys. 217 (2001), 383-407. Zbl0994.58009 MR1821229 · Zbl 0994.58009 · doi:10.1007/s002200100377
[17] G. Dunne, “Self-dual Chern-Simons Theories”, Lecture Notes in Physics m36, Springer-Verlag, Berlin, 1995. Zbl0834.58001 · Zbl 0834.58001 · doi:10.1007/978-3-540-44777-1
[18] J. Hong - Y. Kim - P. Y. Pac, Multivortex solutions of the Abelian Chern Simons theory, Phys. Rev. Letter 64 (1990), 2230-2233. Zbl1014.58500 MR1050529 · Zbl 1014.58500 · doi:10.1103/PhysRevLett.64.2230
[19] R. Jackiw - E. J. Weinberg, Selfdual Chern Simons vortices, Phys. Rev. Lett. 64 (1990), 2234-2237. Zbl1050.81595 MR1050530 · Zbl 1050.81595 · doi:10.1103/PhysRevLett.64.2234
[20] Y. Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444. Zbl0928.35057 MR1673972 · Zbl 0928.35057 · doi:10.1007/s002200050536
[21] C. S. Lin, Topological degree for mean field equations on \(S^ 2\), Duke Math. J. 104 (2000), 501-536. Zbl0964.35038 MR1781481 · Zbl 0964.35038 · doi:10.1215/S0012-7094-00-10437-1
[22] C. S. Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (2000), 153-176. Zbl0968.35045 MR1770683 · Zbl 0968.35045 · doi:10.1007/s002050000085
[23] M. Nolasco, Non-topological \(N\)-vortex condensates for the self-dual chern-Simons theory, Comm. Pure Appl. Math. 56 (2003), 1752-1780. Zbl1032.58005 MR2001445 · Zbl 1032.58005 · doi:10.1002/cpa.10109
[24] M. Nolasco - G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31-94. Zbl0951.58030 MR1710938 · Zbl 0951.58030 · doi:10.1007/s005260050132
[25] M. Nolasco - G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), 161-195. Zbl0980.46022 MR1664542 · Zbl 0980.46022 · doi:10.1007/s002050050127
[26] J. Prajapat - G. Tarantello, On a class of elliptic problems in \(\mathbb{R}^2\): symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 967-985. Zbl1009.35018 MR1855007 · Zbl 1009.35018 · doi:10.1017/S0308210500001219
[27] Spruck - Y. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 75-97. Zbl0836.35007 MR1320569 · Zbl 0836.35007 · numdam:AIHPC_1995__12_1_75_0 · eudml:78353
[28] Taubes, Arbitrary \(N\)-vortex solutions to the first order Ginzburg-Landau equations, Comm. Math. Phys. 72 (1980), 277-292. Zbl0451.35101 MR573986 · Zbl 0451.35101 · doi:10.1007/BF01197552
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.