zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Initial value problem for a class of fourth-order nonlinear wave equations. (English) Zbl 1170.35473
Summary: Existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.

35L30Higher order hyperbolic equations, initial value problems
35G25Initial value problems for nonlinear higher-order PDE
Full Text: DOI
[1] Zhu, Weiqui. Nonlinear waves in elastic rods (in Chinese). Acta Mechanica Solida Sinica 1(2): 247--253 (1980)
[2] Zhuang, Wei and Yang, Guitong. Propagation of solitary waves in the nonlinear rods. Applied Mathematics and Mechanics (English Edition) 7(7), 615--626 (1986) DOI: 10.1007/BF01895973 · Zbl 0602.73025 · doi:10.1007/BF01895973
[3] Zhang, Shanyuan and Zhuang, Wei. Strain solitary waves in the nonlinear rods (in Chinese). Acta Mechanica Sinia 20(1), 58--66 (1998)
[4] Makhankov, V. G. Dynamics of classical solition (in non-integrable systems). Physics Reports, Phys. Lett. C 35(1), 1--128 (1978) · doi:10.1016/0370-1573(78)90074-1
[5] Liu, Y. Existence and blow up of solution of a nonlinear Pochhammer-Chree equation. Indiana Univ. Math. J. 45(3), 797--816 (1996) · Zbl 0883.35116
[6] DĂ© Godefrog, Akmel. Blow up of solutions of a generalized Boussinesq equation. IMA Journal of Applied Mathematics 60(1), 123--138 (1998) · Zbl 0913.35023 · doi:10.1093/imamat/60.2.123
[7] Liu, Y. Strong instability of solitary-waves solutions of a generalized Boussinesq equation. Journal of Differential Equations 164(2), 223--239 (2000) · Zbl 0973.35163 · doi:10.1006/jdeq.2000.3765
[8] Constantin, Adrian and Molinet, Luc. The initial value problem for a generalized Boussinesq equation. Differential and Integral Equations 15(9), 1061--1072 (2002) · Zbl 1161.35445
[9] Chen, Guowang and Wang, Shubin. Existence and nonexistence of global solution for the generalized IMBq equation. Nonlinear Analysis TMA 36(8), 961--980 (1999) · Zbl 0920.35005 · doi:10.1016/S0362-546X(97)00710-4
[10] Wang, Shubin and Chen, Guowang. Small amplitude solutions of the generalized IMBq equation. J. Math. Anal. 274(2), 846--866 (2002) · Zbl 1136.35425 · doi:10.1016/S0022-247X(02)00401-8
[11] Chen, Guowang and Wang, Shubin. Existence and nonexistence of global solution for nonlinear hyperbolic equations of higher order. Comment. Math. Univ. Carolinae 36(3), 475--487 (1995) · Zbl 0839.35085
[12] Chen, Xiangying. Existence and nonexistence of the global solutions for nonlinear evolution equation of fourth-order. Appl. Math. J. Chinese Univ. Ser. B 16(3), 251--258 (2001) · Zbl 0988.35104 · doi:10.1007/s11766-001-0063-6
[13] Chen, Xiangying and Chen, Guowang. Asymptotic behavior and blow up of solutions to a nonlinear evolution equation of fourth-order. Nonlinear Analysis TMA 68(4), 892--904 (2008) · Zbl 1260.35077 · doi:10.1016/j.na.2006.11.045
[14] Wang, Shubin and Chen, Guowang. Cauchy problem of the generalized double dispersion equation. Nonlinear Analysis TMA 64(1), 159--173 (2006) · Zbl 1092.35056 · doi:10.1016/j.na.2005.06.017
[15] Levine, H. A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5(1), 138--146 (1974) · Zbl 0269.35063 · doi:10.1137/0505015
[16] Liu, Y. and Xu, R. Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation. Physica D 237(6), 721--731 (2008) · Zbl 1185.35192 · doi:10.1016/j.physd.2007.09.028