zbMATH — the first resource for mathematics

The recurrence dimension for piecewise monotonic maps of the interval. (English) Zbl 1170.37316
Summary: We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval \([0,1]\), giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.
37E05 Dynamical systems involving maps of the interval
37C45 Dimension theory of smooth dynamical systems
28A80 Fractals
37B40 Topological entropy
28A78 Hausdorff and packing measures
Full Text: EuDML
[1] V. Afraimovich, Pesins dimension for Poincaré recurrences, Chaos 7 (1997), 12-20. Zbl0933.37019 MR1439803 · Zbl 0933.37019
[2] V. Afraimovich and J. Urias, Dimension-like characteristics of invariant sets in dynamical systems, In: “Dynamics and randomness”, A. Maass, S. Martinez and J. San Martin (eds.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 1-30. Zbl1031.37024 MR1975573 · Zbl 1031.37024
[3] V. Afraimovich, J.-R. Chazottes and B. Saussol, Local dimensions for Poincaré recurrence, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 64-74. Zbl0955.37013 MR1777857 · Zbl 0955.37013
[4] J.-R. Chazottes and B. Saussol, On pointwise dimensions and spectra of measures, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 719-723. Zbl1012.37017 MR1868941 · Zbl 1012.37017
[5] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. Zbl0578.60069 MR843500 · Zbl 0578.60069
[6] F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, In: “Lyapunov exponents”, Proceedings, Oberwolfach, 1990, Lecture Notes in Mathematics 1486, L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Springer, Berlin, 1991, pp. 227-231. Zbl0744.58042 MR1178961 · Zbl 0744.58042
[7] F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Ergod. Theory Dynam. Systems 15 (1995), 1119-1142. Zbl0842.58019 MR1366311 · Zbl 0842.58019
[8] F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. J. Math. 35 (1992), 84-98. Zbl0701.28005 MR1157469 · Zbl 0701.28005
[9] F. Hofbauer, P. Raith and T. Steinberger, Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, Fund. Math. 176 (2003), 209-232. Zbl1051.37011 MR1992820 · Zbl 1051.37011
[10] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433-497. Zbl0686.58027 MR1005524 · Zbl 0686.58027
[11] G. Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183-200. Zbl0712.28008 MR1026617 · Zbl 0712.28008
[12] W. de Melo and S. van Strien, “One-dimensional dynamics”, Springer-Verlag Berlin-Heidelberg-New York, 1993. Zbl0791.58003 MR1239171 · Zbl 0791.58003
[13] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196. Zbl0841.28012 MR1361481 · Zbl 0841.28012
[14] Y. Pesin, “Dimension theory in dynamical systems: Contemporary views and applications”, The University of Chicago Press Chicago and London, 1997. Zbl0895.58033 MR1489237 · Zbl 0895.58033
[15] B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence, dimensions and Lyapunov exponents, J. Statist. Phys. 106 (2002), 623-634. Zbl1138.37300 MR1884547 · Zbl 1138.37300
[16] B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189-203. Zbl1083.37504 MR1996808 · Zbl 1083.37504
[17] P. Walters, “An introduction to ergodic theory”, Springer-Verlag Berlin-Heidelberg-New York, 1982. Zbl0475.28009 MR648108 · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.