Lerman, Gilad; Whitehouse, J. Tyler On \(d\)-dimensional \(d\)-semimetrics and simplex-type inequalities for high-dimensional sine functions. (English) Zbl 1170.46025 J. Approx. Theory 156, No. 1, 52-81 (2009). Summary: We show that high-dimensional analogues of the sine function (more precisely, the \(d\)-dimensional polar sine and the \(d\)-th root of the \(d\)-dimensional hypersine) satisfy a simplex-type inequality in a real pre-Hilbert space \(H\). Adopting the language of M.–M. Deza and I. G. Rosenberg [Eur. J. Comb. 21, No. 6, 797–806 (2000; Zbl 0988.54029)], we say that these \(d\)-dimensional sine functions are \(d\)-semimetrics. We also establish geometric identities for both the \(d\)-dimensional polar sine and the \(d\)-dimensional hypersine. We then show that, when \(d=1\), the underlying functional equation of the corresponding identity characterizes a generalized sine function. Finally, we show that the \(d\)-dimensional polar sine satisfies a relaxed simplex inequality of two controlling terms “with high probability”. Cited in 7 Documents MathOverflow Questions: addition theorems for hypersine MSC: 46C99 Inner product spaces and their generalizations, Hilbert spaces 52C99 Discrete geometry 39B05 General theory of functional equations and inequalities 54E25 Semimetric spaces 51M16 Inequalities and extremum problems in real or complex geometry Keywords:high-dimensional geometry; polar sine; hypersine; \(d\)-semimetrics; geometric inequalities; concentration inequalities; pre-Hilbert space; functional equations in several variables; trigonometric identities; Ahlfors regular measure Citations:Zbl 0988.54029 PDF BibTeX XML Cite \textit{G. Lerman} and \textit{J. T. Whitehouse}, J. Approx. Theory 156, No. 1, 52--81 (2009; Zbl 1170.46025) Full Text: DOI arXiv OpenURL References: [1] Aczel, J., Lectures on functional equations and their applications, (1966), Academic Press · Zbl 0139.09301 [2] Aczel, J.; Dhombres, J., Functional equations in severable variables, vol. 31, (1989), Cambridge University Press · Zbl 0685.39006 [3] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, S. Belongie, Beyond pairwise clustering, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’05, vol. 2, 2005, pp. 838-845 [4] Bartoš, P., The sine theorem of simplexes in \(E_n\), Časopis Pěst. mat., 93, 273-277, (1968) · Zbl 0162.52302 [5] G. Chen, G. Lerman, Foundations of a multi-way spectral clustering framework for hybrid linear modeling, 2007 (submitted for publication). Preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3724v1.pdf · Zbl 1176.68155 [6] G. Chen, G. Lerman, Spectral curvature clustering (SCC), Internat. J. Comput. Vision (2007) (in press) [7] Deza, M.M.; Rosenberg, I.G., \(n\)-semimetrics, European J. combin., 21, 6, 797-806, (2000) · Zbl 0988.54029 [8] D’Ovidio, H., LES fonctions métriques fondamentales dans un espace de plusieurs dimensions et de courbure constante, Math. ann., 12, 3, 403-418, (1877) · JFM 09.0382.01 [9] Erikkson, F., The law of sines for tetrahedra and \(n\)-simplices, Geom. dedicata, 7, 1, 71-80, (1978) · Zbl 0375.50008 [10] L. Euler, Nov. Comm. Petr. (4) (158) 1752-1753 [11] Joachimsthal, F., Sur quelques applications des déterminants à la Géométrie, J. math. (crelle), 40, 21-47, (1850) [12] Kokkendorff, S.L., Polar duality and the generalized law of sines, J. geom., 86, 1-2, 140-149, (2007), 2006 · Zbl 1115.51010 [13] Leng, G.S.; Zhang, Y., The generalized sine theorem and inequalities for simplices, Linear algebra appl., 278, 1-3, 237-247, (1998) · Zbl 0937.51013 [14] G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures — part I: Geometric multipoles and multiscale inequalities, 2007 (submitted for publication). Preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.1425v1.pdf · Zbl 1232.28007 [15] G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures — part II: \(d\)-separation and a Menagerie of curvatures (in preparation). Preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0809/0809.0137v1.pdf · Zbl 1222.28007 [16] Menger, K., Untersuchungen über allgemeine metrik, Math. ann., 103, 1, 466-501, (1930) · JFM 56.0508.04 [17] Mohlenkamp, M.J.; Monzón, L., Trigonometric identities and sums of separable functions, Math. intelligencer, 27, 2, 65-69, (2005) · Zbl 1189.26003 [18] Melnikov, M.; Mattila, P.; Verdera, J., The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of math. (2), 144, 1, 127-136, (1996) · Zbl 0897.42007 [19] Petkovšek, M.; Wilf, H.S.; Zeilberger, D., \(a = b\), (1996), A.K. Peters Ltd. Wellesley, MA [20] R.A. Russel, Hypersine, From mathworld—a Wolfram web resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/HyperSine.html [21] Shashua, A.; Zass, R.; Hazan, T., Multi-way clustering using super-symmetric non-negative tensor factorization, (), 595-608 [22] Veljan, D., The sine theorem and inequalities for volumes of simplices and determinants, Linear algebra appl., 219, 79-91, (1995) · Zbl 0824.51015 [23] Xiaoyan, L.; Gangsong, L., The mixed volume of two finite vector sets, Discrete comput. geom., 33, 3, 403-421, (2005) · Zbl 1072.52004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.