×

Involutions of compact Riemannian 4-symmetric spaces. (English) Zbl 1170.53029

A homogeneous space \((G/H,\langle,\rangle)\), where \(G\) is a Lie group, \(H\) a compact subgroup of \(G\) and \(\langle,\rangle\) a \(G\)-invariant Riemannian metric, is called a Riemannian \(k\)-symmetric space if there exists an automorphism \(\sigma\) on \(G\) such that \(G_o^{\sigma}\subset H\subset G^{\sigma}\), where \(G^{\sigma}\) and \(G_o^{\sigma}\) is the set of fixed points of \(\sigma\) and its identity component, respectively; \(\sigma^k=Id\) and \(\sigma^l\neq Id\) for any \(l<k\); the transformation of \(G/H\) induced by \(\sigma\) is an isometry. Such a space is denoted by \((G/H,\langle,\rangle,\sigma)\).
Riemannian \(3\)-symmetric spaces were classified in [A. Gray, J. Differ. Geom. 7, 343–369 (1972; Zbl 0275.53026)] and compact Riemannian \(4\)-symmetric spaces in [J. A. Jiménez, Trans. Am. Math. Soc. 306, 715–734 (1988; Zbl 0647.53039)]. Then classification results were obtained for the involutions of a compact Riemannian \(3\)-symmetric in [K. Tojo, Tohoku Math. J. 53, 131–143 (2001; Zbl 1026.53030) and J. Math. Soc. Japan 58, 17–53 (2006; Zbl 1097.53039)].
In this paper the authors consider the compact, irreducible Riemannian \(4\)-symmetric spaces \((G/H,\langle,\rangle,\sigma)\) such that the dimension of the centre of \(H\) is \(0\), or \(H\) is a centralizator of a toral subgroup of \(G\), and then they give all involutions \(\tau\) of such a space, with the property that \(\tau(H)=H\). Finally, they find the conjugations between these involutions and use them in order to obtain the classification of all equivalence classes of involutions preserving \(H\).

MSC:

53C30 Differential geometry of homogeneous manifolds
17B20 Simple, semisimple, reductive (super)algebras
53C35 Differential geometry of symmetric spaces
PDFBibTeX XMLCite
Full Text: arXiv Euclid

References:

[1] M. Berger: Les espaces symétriques noncompacts , Ann. Sci. École Norm. Sup. (3) 74 (1957), 85–177. · Zbl 0093.35602
[2] N. Bourbaki: Groupes et Algébres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981. · Zbl 0483.22001
[3] H. Freudenthal and H. de Vries: Linear Lie Groups, Academic Press, New York, 1969. · Zbl 0377.22001
[4] P.B. Gilkey and G.M. Seitz: Some representations of exceptional Lie algebras , Geom. Dedicata 25 (1988), 407–416. · Zbl 0661.17005 · doi:10.1007/BF00191935
[5] A. Gray: Riemannian manifolds with geodesic symmetries of order \(3\) , J. Differential Geometry 7 (1972), 343–369. · Zbl 0275.53026
[6] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. · Zbl 0451.53038
[7] J.A. Jiménez: Riemannian \(4\)-symmetric spaces , Trans. Amer. Math. Soc. 306 (1988), 715–734. · Zbl 0647.53039 · doi:10.2307/2000819
[8] V.G. Kac: Infinite-Dimensional Lie Algebras, third edition, Cambridge Univ. Press, Cambridge, 1990. · Zbl 0716.17022
[9] S. Kaneyuki and H. Asano: Graded Lie algebras and generalized Jordan triple systems , Nagoya Math. J. 112 (1988), 81–115. · Zbl 0699.17021
[10] S. Murakami: Sur la classification des algèbres de Lie réelles et simples , Osaka J. Math. 2 (1965), 291–307. · Zbl 0163.28101
[11] H. Naitoh: Compact simple Lie algebras with two involutions and submanifolds of compact symmetric spaces , I, II, Osaka J. Math. 30 (1993), 653–690, 691–732. · Zbl 0818.53070
[12] H. Naitoh: Grassmann geometries on compact symmetric spaces of general type , J. Math. Soc. Japan 50 (1998), 557–592. · Zbl 0911.53033 · doi:10.2969/jmsj/05030557
[13] K. Tojo: Totally real totally geodesic submanifolds of compact 3-symmetric spaces , Tohoku Math. J. (2) 53 (2001), 131–143. · Zbl 1026.53030 · doi:10.2748/tmj/1178207535
[14] K. Tojo: Classification of totally real and totally geodesic submanifolds of compact 3-symmetric spaces , J. Math. Soc. Japan 58 (2006), 17–53. · Zbl 1097.53039 · doi:10.2969/jmsj/1145287092
[15] J.A. Wolf and A. Gray: Homogeneous spaces defined by Lie group automorphisms , I, II, J. Differential Geometry 2 (1968), 77–114, 115–159. · Zbl 0182.24702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.