zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The central limit theorem for capacities. (English) Zbl 1170.60016
Summary: In investigations where the parameter of interest is the mean or expectation of some random variable and the underlying probability measure (distribution) is unknown, one usually appeals to the central limit theorem, provided it holds. In this article, the central limit theorem and the weak law of large numbers for capacities are presented. Capacities are non-additive probability measures which provide alternative and plausible measures of likelihood or uncertainty when the assumption of additivity is suspect. Some examples of practical problems in game theory, economics and finance that can be solved at least partially, by the central limit theorem for capacities, are presented.

MSC:
60F05Central limit and other weak theorems
WorldCat.org
Full Text: DOI
References:
[1] Anderson, D.R., Sweeney, D.J., Williams, T.A., 2000. An Introduction to Management Science: Quantitative Approaches to Decision Making. South Western College, New York
[2] Augustin, T.: Optimal decisions under complex uncertainty -- basic notions and a general algorithm for data-based decision making with partial prior knowledge described by interval probability, Gesellschaft für angewandte Mathematik und mechanik 84, 678-687 (2004) · Zbl 1056.62009 · doi:10.1002/zamm.200410151
[3] Choquet, G.: The theory of capacities, Ann. inst. Fourier 5, 131-295 (1954) · Zbl 0064.35101 · numdam:AIF_1954__5__131_0
[4] Chung, K. L.: A course in probability theory, (1974) · Zbl 0345.60003
[5] Doob, J.: Classical potential theory and its probabilistic counterpart, (1984) · Zbl 0549.31001
[6] Hogg, R. V.; Mckean, J. W.; Craig, A. T.: Introduction to mathematical statistics, (2005)
[7] Huber, P. J.; Strassen, V.: Minimax tests and Neyman--Pearson lemma for capacities, Ann. statist. 1, No. 2, 251-263 (1973) · Zbl 0259.62008 · doi:10.1214/aos/1176342363
[8] Huber, P. J.; Strassen, V.: Correction to minimax tests and Neyman--Pearson lemma for capacities, Ann. statist. 2, No. 1, 223-224 (1974) · Zbl 0269.62020 · doi:10.1214/aos/1176342630
[9] Macherroni, F.; Marinacci, M.: The strong law of large numbers for capacities, Ann. probab. 33, No. 3, 1171-1178 (2005) · Zbl 1074.60041 · doi:10.1214/009117904000001062
[10] Marinacci, M.: Limit laws for non-additive probabilities and their frequentist interpretation, J. econom. Theory 84, 145-195 (1999) · Zbl 0921.90005 · doi:10.1006/jeth.1998.2479
[11] Ross, S.: A first course in probability, (2006) · Zbl 1307.60001
[12] Schmeidler, D.: Subjective probability and expected utility without additivity, Econometrica 57, 571-587 (1989) · Zbl 0672.90011 · doi:10.2307/1911053