zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Smale’s point estimate theory for Newton’s method on Lie groups. (English) Zbl 1170.65040
Many problems from applied mathematics can be formulated as computing zeroes of mappings or vector fields on a Riemannian manifold. The best known of them is the Newton’s method, another one is Smale’s $\alpha$- and $\gamma$-theory. On the other hand, some numerical problems such as symmetric eigenvalue problems, ordinary differential equations on manifolds can be considered as problems on Lie groups. In the present paper the authors study the convergence for a variant of the Newton’s method defined as follows: $$x_{n+1}=x_{n}\cdot \exp(-df^{-1}_{x_{n}}f(x_{n}))$$ where $df$ is the derivative of $f$ and is defined in terms of the exponential map and independent of the Riemannian metric. Unlike the notion of the $\gamma$-condition on the Riemann manifolds, this condition is defined via the one parameter subgroup and so is independent of the Riemannian connection. They establish the generalized $\alpha$- and $\gamma$-theory. As an application two initial value problems are presented on the special orthogonal group SO$(N,\Bbb R)$.

65J15Equations with nonlinear operators (numerical methods)
58C15Implicit function theorems and global Newton methods on manifolds
34G20Nonlinear ODE in abstract spaces
Full Text: DOI
[1] Adler, R.; Dedieu, J. P.; Margulies, J.; Martens, M.; Shub, M.: Newton method on Riemannian manifolds and a geometric model for human spine, IMA J. Numer. anal. 22, 1-32 (2002) · Zbl 1056.92002 · doi:10.1093/imanum/22.3.359
[2] Edelman, A.; Arias, T. A.; Smith, T.: The geometry of algorithms with orthogonality constraints, SIAM J. Matrix anal. Appl. 20, 303-353 (1998) · Zbl 0928.65050 · doi:10.1137/S0895479895290954
[3] Gabay, D.: Minimizing a differentiable function over a differential manifold, J. optim. Theory appl. 37, 177-219 (1982) · Zbl 0458.90060 · doi:10.1007/BF00934767
[4] Smith, S. T.: Optimization techniques on Riemannian manifolds, Fields institute communications 3, 113-146 (1994) · Zbl 0816.49032
[5] S.T. Smith, Geometric optimization method for adaptive filtering, Ph. D. Thesis, Harvard University, Cambridge, MA, (1993)
[6] Udriste, C.: Convex functions and optimization methods on Riemannian manifolds, Mathematics and its applications 297 (1994) · Zbl 0932.53003
[7] Kantorovich, L. V.: On Newton method for functional equations, Dokl. acad. Nauk. 59, 1237-1240 (1948)
[8] Kantorovich, L. V.; Akilov, G. P.: Functional analysis, (1982) · Zbl 0484.46003
[9] Ferreira, O. P.; Svaiter, B. F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds, J. complexity. 18, 304-329 (2002) · Zbl 1003.65057 · doi:10.1006/jcom.2001.0582
[10] Blum, L.; Cucker, F.; Shub, M.; Smale, S.: Complexity and real computation, (1997) · Zbl 0948.68068
[11] Smale, S.: Newton’s method estimates from data at one point, The merging of disciplines: new directions in pure, applied and computational mathematics, 185-196 (1986) · Zbl 0613.65058
[12] Dedieu, J. P.; Priouret, P.; Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory, IMA J. Numer. anal. 23, 395-419 (2003) · Zbl 1047.65037 · doi:10.1093/imanum/23.3.395
[13] Li, C.; Wang, J. H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the ${\gamma}$-condition, IMA J. Numer. anal. 26, 228-251 (2006) · Zbl 1094.65052 · doi:10.1093/imanum/dri039
[14] Wang, X. H.; Han, D. F.: Criterion ${\alpha}$ and Newton’s method in weak condition, Chinese J. Numer. appl. Math. 19, 96-105 (1997) · Zbl 0928.65067
[15] Alvarez, F.; Bolte, J.; Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds, Found. comput. Math. 8, 197-226 (2008) · Zbl 1147.58008 · doi:10.1007/s10208-006-0221-6
[16] Mahony, R. E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem, Linear algebra appl. 248, 67-89 (1996) · Zbl 0864.65032 · doi:10.1016/0024-3795(95)00171-9
[17] Mahony, R. E.; Manton, J.: The geometry of the Newton method on non-compact Lie groups, J. global optim. 23, 309-327 (2002) · Zbl 1019.22005 · doi:10.1023/A:1016586831090
[18] Munthe-Kaas, H.: High order Runge--Kutta methods on manifold, Appl. numer. Math. 29, 115-127 (1999) · Zbl 0934.65077 · doi:10.1016/S0168-9274(98)00030-0
[19] Owren, B.; Welfert, B.: The Newton iteration on Lie groups, BIT, numer. 40, 121-145 (2000) · Zbl 0957.65054 · doi:10.1023/A:1022322503301
[20] Varadarajan, V. S.: Lie groups Lie algebras and their representations, Gtm 102 (1984) · Zbl 0955.22500
[21] Warner, F. W.: Foundations of differentiable manifolds and Lie groups, Gtm 94 (1983) · Zbl 0516.58001
[22] Docarmo, M. P.: Riemannian geometry, (1992)
[23] Wang, X. H.: Convergence on the iteration of halley family in weak conditions, Chinese sci. Bull. 42, 552-555 (1997) · Zbl 0884.30004 · doi:10.1007/BF03182614
[24] Wang, X. H.; Han, D. F.: On the dominating sequence method in the point estimates and Smale’s theorem, Scientia sinica ser. A. 33, 135-144 (1990) · Zbl 0699.65046
[25] Helgason, S.: Differential geometry Lie groups symmetric spaces, (1978) · Zbl 0451.53038
[26] Hall, B. C.: Lie groups Lie algebras representations, Gtm 222 (2004)