zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving fractional integral equations by the Haar wavelet method. (English) Zbl 1170.65106
Summary: Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples.

65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
26A33Fractional derivatives and integrals (real functions)
45E10Integral equations of the convolution type
65T60Wavelets (numerical methods)
Full Text: DOI
[1] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematic studies 204 (2006)
[3] Achar, B. N. N.; Hanneken, J. W.; Enck, T.; Clarke, T.: Dynamics of the fractional oscillator, Physica A 297, 361-367 (2001) · Zbl 0969.70511 · doi:10.1016/S0378-4371(01)00200-X
[4] Achar, B. N. N.; Hanneken, J. W.; Clarke, T.: Response characteristics of a fractional oscillator, Physica A 309, 275-288 (2002) · Zbl 0995.70017 · doi:10.1016/S0378-4371(02)00609-X
[5] Eab, C. H.; Lim, S. C.: Path integral representation of fractional harmonic oscillator, Physica A 371, 303-316 (2006)
[6] Miyakoda, T.: On a almost free damping vibration equation using N-fractional calculus, J. comp. Appl. math. 144, 233-240 (2002) · Zbl 1007.34006 · doi:10.1016/S0377-0427(01)00563-5
[7] Rabei, E. M.; Nawafleh, K. I.; Hijjawi, R. S.; Muslin, S. I.; Baleanu, D.: The Hamilton formalism with fractional derivatives, J. math. Anal. appl. 327, 891-897 (2007) · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076
[8] Daftardar-Gejji, V.; Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition, Appl. math. Comp. 189, 541-548 (2007) · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[9] Sheu, L. -J.; Chen, H. -K.; Chen, J. -H.; Tam, L. -M.: Chaotic dynamics of the fractionally damped Duffing equation, Chaos soliton fract. 32, 1459-1468 (2007) · Zbl 1129.37015 · doi:10.1016/j.chaos.2005.11.066
[10] Ahmad, W. M.; Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems, Chaos soliton fract. 16, 339-351 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[11] Al-Assaf, Y.; El-Khazali, R.; Ahmad, W.: Identification of fractional chaotic system parameters, Chaos soliton fract. 22, 897-905 (2004) · Zbl 1129.93492 · doi:10.1016/j.chaos.2004.03.007
[12] Ü. Lepik, Application of the Haar wavelets for solution of linear integral equations, in: Dynamical Systems and Applications, Proceedings, with E. Tamme, Antalaya, 2004, pp. 494 -- 507.
[13] Lepik, Ü.: Numerical solutions of differential equations using Haar wavelets, Math. comp. Simul. 68, 127-143 (2003) · Zbl 1072.65102 · doi:10.1016/j.matcom.2004.10.005
[14] Lepik, Ü.: Haar wavelet method for nonlinear integro -- differential equations, Appl. math. Comp. 176, 324-333 (2006) · Zbl 1093.65123 · doi:10.1016/j.amc.2005.09.021
[15] Lepik, Ü.: Numerical solution of evolution equations by the Haar wavelet method, Appl. math. Comp. 185, 695-704 (2007) · Zbl 1110.65097 · doi:10.1016/j.amc.2006.07.077
[16] Chen, C. F.; Hsiao, C. H.: Haar wavelet method for solving lumped and distributed parameter systems, IEE-proc.: control theory appl. 144, 87-94 (1997) · Zbl 0880.93014 · doi:10.1049/ip-cta:19970702
[17] Schäfer, I.; Kempfle, S.: Impulse responses of fractional damped systems, Nonlinear dynam. 38, 61-68 (2004) · Zbl 1097.70016 · doi:10.1007/s11071-004-3746-8
[18] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor -- corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341