Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. (English) Zbl 1170.70373

Summary: The present study deals with nonlinear energy pumping which consists in passive irreversible transfer of energy from a linear structure to a nonlinear one. Various results (theoretical, numerical, and experimental) about energy pumping based on recent works are given. Thus, the phenomenon is studied for different excitations: transient and periodical. Moreover, advantages of such a system are carried out in particular efficiency of this phenomenon. That is why the robustness and comparison with classical tuned mass damper are analyzed. An application is considered with physical experiment using a reduced scale building.


70K99 Nonlinear dynamics in mechanics
70J99 Linear vibration theory
Full Text: DOI


[1] Gendelman, O., Manevitch, L.I., Vakakis, A.F., Closkey, R.M.: Energy pumping in nonlinear mechanical oscillators: Part I – dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001) · Zbl 1110.74452
[2] Vakakis, A.F., Gendelman, O.: Energy Pumping in nonlinear mechanical oscillators: Part II – resonance capture. J. Appl. Mech. 68, 42–48 (2001) · Zbl 1110.74725
[3] Manevitch, L.I., Gendelman, O., Moussienko, A.I., Vakakis, A.F., Bergman, L.: Dynamic interaction of a semi-infinite linear chain of coupled oscillators with a strongly nonlinear end attachment. Physica D 178, 1–18 (2003) · Zbl 1067.70020
[4] Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: numerical evidences. Nonlinear Dyn. 40, 281–307 (2005) · Zbl 1101.70015
[5] Gourdon, E., Lamarque, C.H.: Energy pumping for a larger span of energy. J. Sound Vib. 285, 711–720 (2005) · Zbl 1101.70015
[6] Tondl, A., Nabergoj, R.: Dynamic absorbers for an externally excited pendulum. J. Sound Vib. 234(4), 611–624 (2000)
[7] Tondl, A.: Vibration quenching of an externally excited system by means of a dynamic absorber. Acta Techn. CSAV 43, 301–309 (1998)
[8] McFarland, D.M., Bergman, L., Vakakis, A.F., Manevitch, L.I., Gendelman, O.: Energy pumping into passive nonlinear energy sinks attached to forced linear substructures: analytical and experimental results. In: Ninth Conference on Nonlinear Vibrations, Stability, and Dynamics of Structures, Session 3, Virginia Polytechnic Institute and State University, Blacksburg, VA (2002)
[9] Gendelman, O., Manevitch, L.I., Vakakis, A.F., Bergman, L.: A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities. Nonlinear Dyn. 33(1), 1–10 (2003) · Zbl 1038.70016
[10] McFarland, D.M., Gipson, D.L., Vakakis, A.F., Bergman, L.: Characterization of an essentially nonlinear 2-DOF vibration test apparatus. In: Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2–5 June, 1–8 (2002)
[11] McFarland, D.M., Vakakis, A.F., Bergman, L.: Experimental verification of the performance of a nonlinear energy sink. In: Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2–5 June (2002)
[12] Vakakis, A.F., Kounadis, A.N., Raftoyiannis, I.G.: Use of nonlinear localization for isolating structures from earthquake-induced motions. Earthq. Eng. Struct. Dyn. 28, 21–36 (1999)
[13] Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264, 559–577 (2003)
[14] Ville, J.: Théorie et application de la notion de signal analytique. Cables Transm. 2A(1), 61–74 (1948)
[15] Lee, Y.S., Kershen, G., Vakakis, A.F., Panagopoulos, D.M., Bergman, L.A., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D 204(1–2), 41–69 (2005) · Zbl 1179.70013
[16] Dessombz, O.: Analyse dynamique de structures comportant des parametres incertains. Ph.D. Thesis, Ecole Centrale de Lyon, Lyon, France, 2000–36 (2006)
[17] Gourdon, E., Lamarque, C.H.: Nonlinear Energy Sink with Uncertain Parameters. J. Comput. Nonlinear Dyn. 1(3), 187–195 (2006)
[18] Loeve, M.: Probability Theory, 4th edn. Springer-Verlag, Berlin (1977) · Zbl 0359.60001
[19] Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002) · Zbl 1014.65004
[20] Boutin, C., Ibraim, E., Hans, S.: Auscultation de bâtiments réels en vue de l’estimation de la vulnérabilité. Veme Colloque National AFPS, Cachan, pp. 298–305 (1999)
[21] Nayfeh, A.H.: Perturbation Methods. Wiley-Interscience, New York (1973)
[22] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Intersciences, New York (1979)
[23] Nayfeh, J.A.: A perturbation method for treating nonlinear oscillation problems. J. Math. Phys. XLIV, 368–374 (1965) · Zbl 0139.31904
[24] Gendelman, O.V., Gorlov, D.V., Manevitch, L.I., Moussienko, A.I.: Dynamics of coupled linear and essentially nonlinear oscilliator with substantially different masses. J. Sound Vib. 286(1–2), 1–19 (2005)
[25] Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn., 37(2), 115–128 (2004) · Zbl 1081.70012
[26] Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley Interscience, New York (1996) · Zbl 0917.93001
[27] Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. ASME J. Vib. Acoust. 123(3), 324–332 (2001)
[28] Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. Accepted to J. Sound Vib., 294, 651–662 (2006)
[29] Gendelman, O.V., Starosvetsky, Y.: Quasiperiodic response regimes of linear oscillator coupled of nonlinear energy sink under periodic forcing. J. Appl. Mech., in press (2006) · Zbl 1111.74413
[30] Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: Theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003) · Zbl 1039.70506
[31] Den Hartog, J.P.: Mechanical Vibration. McGraw-Hill, New York (1947)
[32] McFarland, D.M., Bergman, L., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40, 891–899 (2005) · Zbl 1349.74011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.