×

Finite-time chaos control of unified chaotic systems with uncertain parameters. (English) Zbl 1170.70401

Summary: This paper is concerned with finite-time chaos control of unified chaotic systems with uncertain parameters. Based on the finite-time stability theory in the cascade-connected system, a nonlinear control law is presented to achieve finite-time chaos control. The controller is simple and easy to be constructed. Simulation results for Lorenz, Lü, and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme.

MSC:

70Q05 Control of mechanical systems
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Colet, P., Roy, R.: Digital communication with synchronization chaotic laser. Opt. Lett. 19(24), 2056–2058 (1994) · doi:10.1364/OL.19.002056
[2] Sugawara, T., Tachikawa, M., Tsukamoto, T., Shimizu, T.: Observation of synchronization in laser chaos. Phys. Rev. Lett. 72(22), 3502–3505 (1994) · doi:10.1103/PhysRevLett.72.3502
[3] Lu, J., Wu, X., Lü, J.: Synchronization of a unified system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[4] Yassen, M.T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360, 582–587 (2007) · Zbl 1236.93086 · doi:10.1016/j.physleta.2006.08.067
[5] Tao, C., Liu, X.: Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems. Chaos Solitons Fractals 32, 1572–1581 (2007) · Zbl 1129.93043 · doi:10.1016/j.chaos.2005.12.005
[6] Tavazoei, M.S., Haeri, M.: Determination of active sliding mode controller parameters in synchronizing different chaotic systems. Chaos Solitons Fractals 32, 583–591 (2007) · doi:10.1016/j.chaos.2005.10.103
[7] Jamal, M.N., Ammar, N.N.: Chaos control using sliding-mode theory. Chaos Solitons Fractals 33, 695–702 (2007) · doi:10.1016/j.chaos.2006.01.071
[8] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal.: Real World Appl. (2007). doi: 10.1016/j.nonrwa.2007.10.025 · Zbl 1167.37332
[9] Wang, F., Si, S., Shi, G.: Chaotic synchronization problem of finite-time convergence based on terminal slide mode control. Acta Phys. Sin. 55, 5694–5699 (2006) · Zbl 1202.93015
[10] Wu, G., Wang, C., Zeng, Q.: Synchronization of chaotic systems with parametric uncertainty using terminal sliding mode adaptive control. Control Decision 21, 229–232 (2006) · Zbl 1125.93393
[11] Gao, T., Chen, Z., Yuan, Z.: Robust finite time synchronization of choatic systems. Acta Phys. Sin. 54, 2574–2579 (2005)
[12] Lu, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[13] Hong, Y., Yang, G., Linda, B., Wang, H.: Global finite-time stabilization: from state feedback to output feedback. In: Proceedings of the 39th IEEE Conference on Decision and Control Sydney, pp. 2908–2913. Australia, December 2000
[14] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002) · Zbl 1003.34002
[15] Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.