×

On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. (English) Zbl 1170.76307

Summary: In this Letter a totally analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder is obtained using homotopy analysis method (HAM). The series solution is developed and the recurrence relations are given explicitly. Convergence of the solution and effects of rheological parameters are discussed. The comparison of the HAM results with HPM results is made. It is found that HPM results are divergent for strong nonlinearity. The results reveal that HAM is very simple and effective and provides a simple way to control and adjust the convergence region.

MSC:

76A20 Thin fluid films
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hayat, T.; Wang, Y.; Hutter, K., Int. J. Non-Linear Mech., 39, 1027 (2004) · Zbl 1348.76187
[2] Rajagopal, K. R., Int. J. Non-Linear Mech., 17, 369 (1982) · Zbl 0527.76003
[3] Rajagopal, K. R., J. Non-Newtonian Fluid Mech., 15, 239 (1984) · Zbl 0568.76015
[4] Fetecau, C.; Fetecau, C., Int. J. Non-Linear Mech., 38, 423 (2003) · Zbl 1287.76041
[5] Fetecau, C.; Fetecau, C., Int. J. Non-Linear Mech., 38, 603 (2003) · Zbl 1287.76042
[6] Fetecau, C.; Fetecau, C., Int. J. Non-Linear Mech., 38, 985 (2003) · Zbl 1287.76043
[7] Fetecau, C.; Fetecau, C., Int. J. Eng. Sci., 43, 781 (2005) · Zbl 1211.76032
[8] Asghar, S.; Hayat, T.; Siddiqui, A. M., Int. J. Non-Linear Mech., 37, 75 (2002) · Zbl 1116.76310
[9] Hayat, T., Z. Angew. Math. Mech., 85, 449 (2005) · Zbl 1071.76063
[10] Hayat, T.; Nadeem, S.; Asghar, S., Appl. Math. Comput., 151, 153 (2004) · Zbl 1161.76436
[11] Tan, W. C.; Masuoka, T., Int. J. Non-Linear Mech., 40, 515 (2005) · Zbl 1349.76830
[12] Cortell, R., Int. J. Non-Linear Mech., 29, 155 (1994) · Zbl 0795.76010
[13] Cortell, R., Appl. Math. Comput., 168, 557 (2005) · Zbl 1081.76059
[14] Sadeghy, K.; Najafi, A. H.; Saffaripour, M., Int. J. Non-Linear Mech., 40, 1220 (2005) · Zbl 1349.76081
[15] Sadeghy, K.; Sharifi, M., Int. J. Non-Linear Mech., 39, 1265 (2004) · Zbl 1348.76064
[16] Cortell, R., Int. J. Non-Linear Mech., 41, 78 (2006) · Zbl 1160.80302
[17] Beavers, G. S.; Joseph, D. D., J. Fluid Mech., 69, 475 (1975) · Zbl 0315.76004
[18] Joseph, D. D.; Beavers, G. S.; Fosdick, R. I., Arch. Ration. Mech. Anal., 49, 321 (1973) · Zbl 0265.76113
[19] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K., Phys. Lett. A, 352, 404 (2006) · Zbl 1187.76622
[20] Liao, S. J., Beyond Perturbation: Introduction to Homotopy Analysis Method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton
[21] S.J. Liao, On the proposed homotopy analysis technique for nonlinear problems and its applications, Ph.D. dissertation, Shanghai Jio Tong University, 1992; S.J. Liao, On the proposed homotopy analysis technique for nonlinear problems and its applications, Ph.D. dissertation, Shanghai Jio Tong University, 1992
[22] Liao, S. J., Appl. Math. Comput., 147, 499 (2004) · Zbl 1086.35005
[23] Liao, S. J., J. Fluid Mech., 385, 101 (1999) · Zbl 0931.76017
[24] Hayat, T.; Khan, M.; Ayub, M., J. Math. Anal. Appl., 298, 225 (2004) · Zbl 1067.35074
[25] Hayat, T.; Khan, M.; Asghar, S., Acta Mech., 168, 213 (2004) · Zbl 1063.76108
[26] Yang, C.; Liao, S. J., Commun. Nonlinear Sci. Numer. Simul., 11, 83 (2006) · Zbl 1075.35059
[27] Liao, S. J., Int. J. Heat Mass Transfer, 48, 2529 (2005) · Zbl 1189.76142
[28] Liao, S. J., Commun. Nonlinear Sci. Numer. Simul., 11, 326 (2006) · Zbl 1078.76022
[29] Liao, S. J., J. Fluid Mech., 488, 189 (2003) · Zbl 1063.76671
[30] Liao, S. J.; Cheung, K. F., J. Eng. Math., 45, 105 (2003) · Zbl 1112.76316
[31] Sajid, M.; Hayat, T.; Asghar, S., Phys. Lett. A, 355, 18 (2006)
[32] Abbas, Z.; Sajid, M.; Hayat, T., Theor. Comput. Fluid Dyn., 20, 229 (2006) · Zbl 1109.76065
[33] He, J. H., Commun. Nonlinear Sci. Numer. Simul., 3, 92 (1998) · Zbl 0921.35009
[34] Fitzpatrick, P. M., Advanced Calculus (1996), PWS
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.