\(\alpha\)-cluster states and \(4 \alpha\)-particle Bose condensate in \(^{16}{\text{O}}\). (English) Zbl 1170.81475

Summary: In order to explore the \(4 \alpha\)-particle condensate state in \(^{16}{\text{O}}\), we solve a full four-body equation of motion based on the \(4 \alpha\) OCM (Orthogonality Condition Model) in a large \(4 \alpha\) model space spanned by Gaussian basis functions. A full spectrum up to the \(0^{+}_{6}\) state is reproduced consistently with the lowest six \(0^{+}\) states of experimental spectrum. The \(0_{6}^{+}\) state is obtained at 2 MeV above the \(4 \alpha\) breakup threshold and has a dilute density structure, where the rms radius is more than 5 fm. The state has an appreciably large \(\alpha\) condensate fraction 61 %, and a highly amount of \(\alpha + ^{12}{\text{C}}(0_{2}^{+})\) components, both of which are strong pieces of evidence of the state being the \(4 \alpha\) condensate state.


81V35 Nuclear physics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI


[1] DOI: 10.1103/PhysRevLett.80.3177
[2] DOI: 10.1016/S0370-2693(00)00908-4
[3] DOI: 10.1143/PTP.51.1266
[4] DOI: 10.1103/PhysRevC.36.54
[5] DOI: 10.1080/10506890308232691
[6] DOI: 10.1103/PhysRevLett.87.192501
[7] DOI: 10.1103/PhysRevC.67.051306
[8] DOI: 10.1016/j.nuclphysa.2004.04.104
[9] DOI: 10.1140/epja/i2005-10168-1
[10] DOI: 10.1016/j.physletb.2006.11.079
[11] DOI: 10.1103/PhysRevC.71.047305
[12] DOI: 10.1103/PhysRevC.69.024309
[13] DOI: 10.1103/PhysRevC.70.041602
[14] DOI: 10.1103/PhysRevC.74.054606
[15] DOI: 10.1103/PhysRevC.75.024302
[16] DOI: 10.1103/PhysRevLett.98.032501
[17] DOI: 10.1143/PTP.55.1751
[18] DOI: 10.1143/PTP.40.277
[19] DOI: 10.1143/ptp/87.1.151
[20] DOI: 10.1016/0375-9474(84)90327-0
[21] Ajzenberg-Selove F., Nucl. Phys. A 46 pp 1–
[22] DOI: 10.1016/j.physletb.2007.08.016
[23] DOI: 10.1103/PhysRevLett.101.082502
[24] DOI: 10.1103/PhysRevC.65.064318
[25] DOI: 10.1016/0370-2693(69)90551-6
[26] DOI: 10.1143/PTP.120.1139
[27] DOI: 10.1080/10506890701572176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.