×

Nonlinear gravitational waves, their polarization, and realistic sources. (English. Russian original) Zbl 1170.83352

Theor. Math. Phys. 152, No. 2, 1069-1080 (2007); translation from Teor. Mat. Fiz. 152, No. 2, 225-240 (2007).
Summary: We describe exact solutions of the Einstein field equations invariant under a non-Abelian two-dimensional Lie algebra of Killing fields. A subclass of these gravitational fields have a wavelike character. We show that they have spin 1. We also discuss some indirect observational effects. In particular, we show that vector cosmological perturbations can no longer be negligible in the presence of topological defects, which can be verified by examining the anisotropies of the cosmic microwave background.

MSC:

83C35 Gravitational waves
83C15 Exact solutions to problems in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. A. Belinskii and V. E. Zakharov, Soviet Phys. JETP, 48, 985 (1978); 50, 1 (1979).
[2] S. De Filippo, G. Marmo, M. Salerno, and G. Vilasi, ”On the phase manifold geometry of integrable nonlinear field theory,” Preprint IFUSA, Salerno (1982).
[3] S. De Filippo, G. Marmo, M. Salerno, and G. Vilasi, Nuovo Cimento B, 83, No. 2, 97 (1984).
[4] S. De Filippo, M. Salerno, and G. Vilasi, Lett. Math. Phys., 9, 85 (1985). · Zbl 0586.35087
[5] G. Landi, G. Marmo, and G. Vilasi, J. Math. Phys., 35, 808 (1994). · Zbl 0801.58020
[6] K. S. Thorne, ”Gravitational waves,” arXiv:gr-qc/9506086v1 (1995).
[7] D. Christodoulou, Phys. Rev. Lett., 67, 1486 (1991). · Zbl 0990.83504
[8] K. S. Thorne, Phys. Rev. D, 45, 520 (1992).
[9] G. Sparano, G. Vilasi, and A. M. Vinogradov, Phys. Lett. B, 513, 142 (2001). · Zbl 0969.83525
[10] G. Sparano, G. Vilasi, and A. M. Vinogradov, Differential Geom. Appl., 16, 95 (2002). · Zbl 1033.53021
[11] G. Sparano, G. Vilasi, and A. M. Vinogradov, Differential Geom. Appl., 17, 15 (2002). · Zbl 1035.53099
[12] D. Catalano Ferraioli and A. M. Vinogradov, Acta Appl. Math., 94, 193 (2006); Preprint DIPS 7/2004, http://diffiety.ac.ru/ (2004).
[13] D. Catalano Ferraioli and A. M. Vinogradov, Acta Appl. Math., 94, 204 (2006); Preprint DIPS 8/2004, http://diffiety.ac.ru/ (2004).
[14] M. Bächtold, ”Ricci flat metrics with bidimensional null orbits and non-integrable orthogonal distribution,” Preprint DIPS 3/2005, http://diffiety.ac.ru/ (2004).
[15] G. Sparano, G. Vilasi, and A. M. Vinogradov, ”Einstein metrics with 2-dimensional Killing leaves: III. The semi-integrable case,” (to appear). · Zbl 1033.53021
[16] A. Einstein and N. Rosen, J. Franklin Inst., 223, 43 (1937). · Zbl 0017.09601
[17] N. Rosen, Bull. Res. Council Israel, 3, 328 (1954).
[18] A. S. Kompaneets, Soviet Phys. JETP, 7, 659 (1958).
[19] R. Geroch, J. Math. Phys., 13, 394 (1972). · Zbl 0241.53038
[20] V. A. Belinskii and I. M. Khalatnikov, Soviet Phys. JETP, 30, 1174 (1970).
[21] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (2nd ed.), Cambridge Univ. Press, Cambridge (2003). · Zbl 1057.83004
[22] F. Canfora and G. Vilasi, Phys. Lett. B, 585, 193 (2004).
[23] A. Peres, Phys. Rev. Lett., 3, 571 (1959). · Zbl 0089.21003
[24] A. Peres, Phys. Rev. (2), 118, 1105 (1960). · Zbl 0093.43401
[25] F. Canfora, G. Vilasi, and P. Vitale, Phys. Lett. B, 545, 373 (2002). · Zbl 0998.83022
[26] J. B. Hartle and S. W. Hawking, Phys. Rev. D, 28, 2960 (1983). · Zbl 1370.83118
[27] H. Ooguri and C. Vafa, Nucl. Phys. B, 367, 83 (1991).
[28] J. Barret, G. W. Gibbons, M. J. Perry, C. N. Pope, and P. Ruback, Internat. J. Mod. Phys. A, 9, 1457 (1994). · Zbl 0985.81632
[29] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York (1972).
[30] P. A. M. Dirac, General Theory of Relativity, Wiley, New York (1975). · Zbl 0844.53061
[31] F. Canfora, G. Vilasi, and P. Vitale, Internat. J. Mod. Phys. B, 18, 527 (2004). · Zbl 1073.83020
[32] P. C. Aichelburg and R. U. Sexl, Gen. Relativity Gravitation, 2, 303 (1971).
[33] E. C. de Rey Neto, Phys. Rev. D, 68, 124013 (2003).
[34] V. D. Zakharov, Gravitational Waves in Einstein’s Theory, Nauka, Moscow (1972); English transl., Israel Program Sci. Transl., Jerusalem (1973).
[35] A. Z. Petrov, Spaces of Einstein, Fizmatgiz, Moscow (1961); English transl.: Einstein Spaces, Pergamon, Oxford (1969).
[36] R. Penrose, Ann. Phys., 10, 171 (1960). · Zbl 0091.21404
[37] S. Chandrasekhar, The Mathematical Theory of Black Holes (Int. Ser. Monogr. Phys., Vol. 69), Clarendon Press, Oxford (1983). · Zbl 0511.53076
[38] G. W. Gibbons and P. J. Ruback, Phys. Rev. Lett., 57, 1492 (1986).
[39] F. Canfora and G. Vilasi, Class. Q. Grav., 22, 1193 (2005). · Zbl 1064.83016
[40] B. Mashhoon, ”Gravitoelectromagnetism,” in: Reference Frames and Gravitomagnetism (J.-F. Pascual-Sánchez, I. Floría, A. San Miguel, and F. Vicente, eds.), World Scientific, River Edge, N. J. (2001), p. 121; arXiv:gr-qc/0011014v1 (2000). · Zbl 1004.83023
[41] M. L. Ruggiero and A. Tartaglia, Nuovo Cimento B, 117, 743 (2002).
[42] R. A. Hulse and J. H. Taylor, Astrophys. J., 195, L51 (1975).
[43] Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, Nauka, Moscow (1967); English transl.: Relativistic Astrophysics, Vol. 1, Stars and Relativity, Univ. Chicago Press, Chicago, Ill. (1971).
[44] J. Bardeen, Phys. Rev. D, 22, 1882 (1980).
[45] T. Battefeld and R. Brandenberger, Phys. Rev. D, 70, 121302(R) (2004).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.