zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evacuation transportation planning under uncertainty: A robust optimization approach. (English) Zbl 1170.90328
Summary: This paper considers evacuation via surface transportation networks in an uncertain environment. We focus on demand uncertainty which can lead to significant infeasibility cost during evacuation, where loss of life or property may appear. We develop a robust linear programming model based on a robust optimization approach where hard constraints are guaranteed within an appropriate uncertainty set. The robust counterpart solutions have been shown tractable. We show that the robustness in evacuation is important and a robust solution outperforms a nominal deterministic solution in both quality and feasibility.

90B06Transportation, logistics
Full Text: DOI
[1] Ahuja RK, Magnanti TL, Orlin JB (2003) Network flows: Theory, algorithms and applications. Pretince Hall, New Jersey
[2] Atamturk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55:662--673 · Zbl 1167.90409 · doi:10.1287/opre.1070.0428
[3] Bazaraa MS, Jarvis JJ, Sherali HD (2005) Linear programming and network flows. Wiley, New Jersey
[4] Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769--805 · Zbl 0977.90052 · doi:10.1287/moor.23.4.769
[5] Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1--13 · Zbl 0941.90053 · doi:10.1016/S0167-6377(99)00016-4
[6] Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411--424 · Zbl 0964.90025 · doi:10.1007/PL00011380
[7] Ben-Tal A, Nemirovski A (2002) Robust optimization--methodology and applications. Math Program 92:453--480 · Zbl 1007.90047 · doi:10.1007/s101070100286
[8] Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99:351--376 · Zbl 1089.90037 · doi:10.1007/s10107-003-0454-y
[9] Ben-Tal A, Golany B, Nemirovski A (2005) Retailer-supplier flexible commitments contracts: a robust optimization approach. Manuf Serv Oper Manag 7:248--271 · doi:10.1287/msom.1050.0081
[10] Ben-Tal A, Ghaoui LE, Nemirovski A (2007) Robust optimization. Available via http://www2.isye.gatech.edu/$\sim$nemirovs/RBIntroTOC.pdf . Accessd 1 Dec 2008 · Zbl 1221.90001
[11] Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98:49--71 · Zbl 1082.90067 · doi:10.1007/s10107-003-0396-4
[12] Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35--53 · Zbl 1165.90565 · doi:10.1287/opre.1030.0065
[13] Bertsimas D, Perakis G (2005) Robust and adaptive optimization: a tractable approach to optimization under uncertainty. NSF/CMMI/OR 0556106
[14] Bertsimas D, Brown DB, Caramanis C (2007) Theory and applications of robust optimization. Available via http://users.ece.utexas.edu/$\sim$cmcaram/pubs/RobustOptimizationSV.pdf . Accessd 1 Dec 2008
[15] Chiu YC, Zheng H, Villalobos J, Gautam B (2007) Modeling no-notice mass evacuation using a dynamic traffic flow optimization model. IIE Trans 39:83--94 · doi:10.1080/07408170600946473
[16] Daganzo CF (1994) The cell transmission model part I: a simple dynamic representation of highway traffic. Transp Res Part B 28:269--287 · doi:10.1016/0191-2615(94)90002-7
[17] Daganzo CF (1995) The cell transmission model part II: network traffic. Transp Res Part B 29:79--93 · doi:10.1016/0191-2615(94)00022-R
[18] Erera AL, Morales JC, Savelsbergh M (2007) Robust optimization for empty repositioning problems, to appear in Oper Res
[19] Ghaoui LE, Oustry F, AitRami M (1997) A cone complementarity linearization algorithm for static output-feedback and related problems. IIE Trans Autom Control 42:1171--1176 · Zbl 0887.93017 · doi:10.1109/9.618250
[20] Ghaoui LE, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper Res 51:543--556 · Zbl 1165.91397 · doi:10.1287/opre.51.4.543.16101
[21] Karoonsoontawong A, Waller ST (2007) Robust dynamic continuous network design problem. J Transp Res Board 2029:58--71 · doi:10.3141/2029-07
[22] Li Y, Waller ST, Ziliaskopoulos T (2003) A decomposition scheme for system optimal dynamic traffic assignment models. Netw Spat Econ 3:441--455 · doi:10.1023/A:1027310021084
[23] Mahmassani HS (2001) Dynamic network traffic assignment and simulation methodology for advanced System management applications. Netw Spat Econ 1:267--292 · doi:10.1023/A:1012831808926
[24] Mudchanatongsuk S, Ordonez F, Liu J (2008) Robust solutions for network design under transportation cost and demand uncertainty. J Oper Res Soc 59:652--662 · Zbl 1153.90341 · doi:10.1057/palgrave.jors.2602362
[25] Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264--281 · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[26] Ordonez F, Zhao J (2007) Robust capacity expansion of network flows. Netw 50:136--145 · Zbl 1144.90325 · doi:10.1002/net.20183
[27] Pearce V (2008) ITS to the rescue. Avaiable via http://www.its.dot.gov/eto/eto_rescue.htm . Accessed 1 Dec 2008
[28] Peeta S, Zhou C (1999) Robustness of the off-line a priori stochastic dynamic traffic assignment solution for on-line operations. Transp Res Part C 7:281--303 · doi:10.1016/S0968-090X(99)00023-6
[29] Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Netw Spat Econ 1:233--265 · doi:10.1023/A:1012827724856
[30] Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154--1157 · Zbl 0266.90046 · doi:10.1287/opre.21.5.1154
[31] Tuydes H (2005) Network traffic management under disaster conditions. Ph.D Dissertation, Northwestern University, Evanston, IL
[32] Ukkusuri SV, Waller ST (2008) Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions. Netw Spat Econ 8:383--406 · Zbl 1162.90515 · doi:10.1007/s11067-007-9019-6
[33] Waller ST, Ziliaskopoulos AK (2006) A chance-constrained based stochastic dynamic traffic assignment model: analysis, formulation and solution algorithms. Transp Res Part C 14:418--427 · doi:10.1016/j.trc.2006.11.002
[34] Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34:37--49 · Zbl 1002.90013 · doi:10.1287/trsc.