zbMATH — the first resource for mathematics

Chemical instabilities and sustained oscillations. (English) Zbl 1170.92344
Summary: The temporal behaviour of a chemical system beyond a non-equilibrium unstable transition is analysed and compared to the behaviour of Volterra-Lotka type systems. The properties of certain types of biological rythmic phenomena are discussed within the framework of this comparison.

92E99 Chemistry
92D40 Ecology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI
[1] Blumenthal, R.; Changeux, J.P.; Lefever, R., C.r. hebd. Séanc acad. sci. D, 270, 389, (1970)
[2] Busse, H., J. phys. chem., Ithaca, 73, 750, (1969)
[3] Cesari, L., ()
[4] Cowan, J., A statistical mechanics of nervous activity, (1969), University of Chicago, preprint
[5] Glansdorff, P.; Prigogine, I., Thermodynamics of stability, structure and fluctuations, (1970), Wiley-Interscience New York, (Mongraph in the Press.) · Zbl 0246.73005
[6] Goodwin, B., Temporal organization in cells, (1963), Academic Press New York
[7] Kerner, E.H., Bull. math. biophys., 26, 333, (1964)
[8] Lefever, R., J. chem. phys., 49, 4977, (1968)
[9] Lotka, A., Elements of mathematical biophysics, (1956), Dover Publications Inc New York
[10] Nicolis, G., J. math. phys., (1970), Submitted to
[11] Prigogine, I., Introduction to thermodynamics of irreversible processes, (1968), Wiley-Interscience New York · Zbl 0115.23101
[12] Prigogine, I.; Lefever, R., J. chem. phys., 48, 1695, (1968)
[13] Prigogine, I., Theoretical physics and biology, (), 23
[14] Prigogine, I.; Nicolis, G., J. chem. phys., 46, 3542, (1967)
[15] Prigogine, I.; Lefever, R.; Goldbeter, A.; Herschkowitz-Kaufman, M., Nature, lond., 223, 913, (1969)
[16] Pye, E.K.; Chance, B., (), 888
[17] Sel’kov, E.E., Europ. J. biochem., 4, 79, (1968)
[18] Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie, (1931), Gauthier-Villars Paris · JFM 57.0466.02
[19] ()
[20] Zhabotinski, A.M., Biofizika, 2, 306, (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.