Dieulefait, Luis The level 1 weight 2 case of Serre’s conjecture. (English) Zbl 1171.11032 Rev. Mat. Iberoam. 23, No. 3, 1115-1124 (2007). In this work, the author proves Serre’s conjecture for the case of Galois representations of Serre’s weight 2 and level 1; equivalently he proves the non existence of odd, 2-dimensional, irreducible representations of the absolute Galois group of \(Q\) with values in a finite field of odd characteristic \(p>3\), in the case of Serre’s weight 2 and level 1. He uses the potential modularity results of Taylor and he applies a generalization of Ribet’s level-lowering result to the case of Hilbert modular forms. Then he uses a Galois descent argument and properties of the universal deformation rings, and to conclude the proof he applies his result, predicted by the Fontaine-Mazur conjecture, about the non-existence of \(p\)-adic Barsotti-Tate conductor 1 Galois representation.The main new idea introduced in this article is the use of potential modularity to obtain from lowering the level of Hilbert modular forms the existence of minimal \(p\)-adic deformation of certain residual Galois representations. Reviewer: Miriam Ciavarella (Torino) Cited in 4 Documents MSC: 11F80 Galois representations 11F11 Holomorphic modular forms of integral weight 11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces Keywords:Galois representations; modular forms × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid EuDML References: [1] Böckle, G.: On the isomorphism \(R_\emptyset \rightarrow T_\emptyset\). Appendix to: Khare, C.: On isomorphisms between deformation rings and Hecke rings, 218-222. Invent. Math. 154 (2003), 199-222. [2] Brueggeman, S.: The nonexistence of certain Galois extensions unramified outside \(5\). J. Number Theory 75 (1999), 47-52. · Zbl 0930.11036 · doi:10.1006/jnth.1998.2318 [3] Deligne, P.: Formes modulaires et représentations \(\ell\)-adiques. In Séminaire Bourbaki , 355 , 139-172. Lecture Notes in Mathematics 179 . Springer-Verlag, 1971. · Zbl 0206.49901 [4] Dieulefait, L.: On the images of the Galois representations attached to genus \(2\) Siegel modular forms J. Reine Angew. Math. 553 (2002), 183-200. · Zbl 1065.11036 · doi:10.1515/crll.2002.098 [5] Dieulefait, L.: Explicit determination of the images of the Galois representations attached to abelian surfaces with \(\mathrmEnd(A)=\mathbbZ\). Experiment. Math. 11 (2002), 503-512. · Zbl 1162.11347 · doi:10.1080/10586458.2002.10504702 [6] Dieulefait, L.: Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture. J. Reine Angew. Math. 577 (2004), 147-151. · Zbl 1065.11037 · doi:10.1515/crll.2004.2004.577.147 [7] Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109 (1992), 563-594. · Zbl 0777.11013 · doi:10.1007/BF01232041 [8] Jarvis, F.: Correspondences on Shimura curves and Mazur’s principle at \(p\). Pacific J. Math. 213 (2004), 267-280. · Zbl 1073.11030 · doi:10.2140/pjm.2004.213.267 [9] Khare, C. and Ramakrishna, R.: Finiteness of Selmer groups and deformation rings. Invent. Math. 154 (2003), 179-198. · Zbl 1104.11026 · doi:10.1007/s00222-003-0311-x [10] Khare, C. and Wintenberger, J-P.: On Serre’s reciprocity conjecture for \(2\)-dimensional \(\mathrmmod p\) representations of \(\mathrmGal(\overline\mathbb Q/\mathbb Q)\). Preprint, (2004); available at: http://arxiv.org/math.NT/0412076. [11] Ramakrishna, R.: Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Ann. of Math. (2) 156 (2002), 115-154. JSTOR: · Zbl 1076.11035 · doi:10.2307/3597186 [12] Ribet, K.: On modular representations of \(\Gal(\bar\Q / \Q)\) arising from modular forms. Invent. Math. 100 (1990), 431-476. · Zbl 0773.11039 · doi:10.1007/BF01231195 [13] Ribet, K.: Images of semistable Galois representations. Olga Taussky-Todd: in memoriam. Pacific J. Math. (1997), Special Issue, 277-297. · Zbl 0942.11032 [14] Schoof, R.: Abelian varieties over \(\Q\) with bad reduction in one prime only. Compos. Math. 141 (2005), 847-868. · Zbl 1173.11333 · doi:10.1112/S0010437X05001107 [15] Serre, J-P.: Sur les représentations modulaires de degré \(2\) de \(\Gal(\bar\mathbbQ / \mathbbQ)\). Duke Math. J. 54 (1987), 179-230. · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5 [16] Serre, J-P.: Œ uvres. Vol. III. 1972-1984 . Springer-Verlag, Berlin, 1986. [17] Skinner, C. and Wiles, A.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89 (1999), 5-126. · Zbl 1005.11030 · doi:10.1007/BF02698855 [18] Tate, J.: The non-existence of certain Galois extensions of \(\Q\) unramified outside \(2\). In Arithmetic Geometry (Tempe, AZ, 1993) , 153-156. Contemp. Math. 174 . Amer. Math. Soc., Providence, RI, 1994. · Zbl 0814.11057 [19] Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98 (1989), 265-280. · Zbl 0705.11031 · doi:10.1007/BF01388853 [20] Taylor, R.: Remarks on a conjecture of Fontaine and Mazur. J. Inst. Math. Jussieu 1 (2002), 125-143. · Zbl 1047.11051 · doi:10.1017/S1474748002000038 [21] Taylor, R.: On the meromorphic continuation of degree two \(L\)-functions. Doc. Math. 2006 , Extra Vol., 729-779 (electronic). · Zbl 1138.11051 [22] Taylor, R.: On icosahedral Artin representations. II. Amer. J. Math. 125 (2003), 549-566. · Zbl 1031.11031 · doi:10.1353/ajm.2003.0021 [23] Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), 443-551. JSTOR: · Zbl 0823.11029 · doi:10.2307/2118559 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.