## Existence of periodic solutions for $$p(t)$$-Laplacian systems.(English)Zbl 1171.34030

Consider the $$p(t)$$-Laplacian system
\begin{aligned} (|u'(t)|^{p(t)-2}u'(t))'+\nabla F(t,u(t))&=0,\\ u(0)-u(T)=u'(0)-u'(T)&=0, \end{aligned}\tag{p}
where $$p(t)\in C([0,T],\mathbb R^1)$$, $$T>0$$, $$F:[0,T]\times\mathbb R^N\to\mathbb R^1$$, $$\nabla F(t,x)=\frac{\partial F(t,x)}{\partial x}$$ for $$t\in\mathbb R^1$$ and $$x\in\mathbb R^N$$. In this paper, by using minimax methods in critical point theory, the authors obtained some existence theorems for periodic solutions of the $$p(t)$$-Laplacian system (p). The main results are the following.
Theorem 4.1. Suppose that $$F$$ satisfies the following conditions
(A
$$F(t,x)=F(t+T,x)$$, $$\nabla F(t,x)$$ is continuous for each $$t \in [0,T]$$ and $$x\in\mathbb R^N$$, $$F(0,0)=0$$, $$\int^T_0F(t,x)\,dt\geq 0$$ for all $$x\in\mathbb R^N$$,
(A
there exist $$\beta>p^+$$ and $$r_1>0$$ such that $$(\nabla F(t,x),x)\geq \beta F(t,x)$$ for $$|x|\geq r_1,$$ where $$(\cdot,\cdot)$$ is the usual inner product of $$\mathbb R^N$$ and $$p^+=\max_{t\in[0,T]}p(t)$$,
(A
there exist $$\mu>p^+$$ and $$g\in C([0,T],\mathbb R^1)$$ such that $$\limsup_{|x|\to 0}\frac{|F(t,x)|}{|x|^\mu}\leq|g(t)|$$,
(A
$$p(t)\in C([0,T],\mathbb R^1)$$, $$p^-=\min_{t\in[0,T]}p(t)>1$$ and $$p(t)=p(t+T)$$ for all $$t\in\mathbb R^1$$.
Then system (p) has at least one periodic solution.
Theorem 4.2. Suppose that $$F$$ satisfies (A$$_1)$$–(A$$_4$$) and $$F(t,x)=F(t,-x)$$ for all $$t\in\mathbb R^1,x\in\mathbb R^N.$$ Then system (p) has infinite many periodic solutions.
Theorem 4.3. Suppose that $$F$$ satisfies the following conditions
(B
$$F(t,x)=F(t+T,x)$$, $$\nabla F(t,x)$$ is continuous for each $$t\in [0,T]$$ and $$x\in\mathbb R^N,$$
(B
there exist $$\eta\in (0,p^-)$$ and $$r_2>0$$ such that $$(\nabla F(t,x),x)\leq \eta F(t,x)$$ for $$|x|\geq r_2,$$ where $$(\cdot,\cdot)$$ is the usual inner product of $$\mathbb R^N,$$
(B
$$\int_0^TF(t,x)\,dt\to\infty$$ as $$|x|\to\infty$$,
(B
$$p(t)\in C([0,T],\mathbb R^1)$$, $$p^-=\min_{t\in[0,T]}p(t)>1$$ and $$p(t)$$ is $$T$$-periodic.
Then system (p) has at least one periodic solution.
In some case, Theorem 4.3 generalizes the results in [B. Xu and C.-L. Tang, J. Math. Anal. Appl. 333, No. 2, 1228-1236 (2007; Zbl 1154.34331)].

### MSC:

 34C25 Periodic solutions to ordinary differential equations 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

Zbl 1154.34331
Full Text:

### References:

 [1] Benci, V., Some critical point theorems and applications, Comm. pure appl. math., 33, 2, 147-172, (1980) · Zbl 0472.58009 [2] Chang, C.K., Critical point theory and its applications, (1986), Shanghai Science and Technology Press Shanghai, (in Chinese) [3] Fan, X.L.; Fan, X., A knobloch-type result for $$p(t)$$-Laplacian systems, J. math. anal. appl., 282, 453-464, (2003) · Zbl 1033.34023 [4] Fan, X.L.; Zhao, D., On the space $$L^{p(x)}(\Omega)$$ and $$W^{m, p(x)}(\Omega)$$, J. math. anal. appl., 263, 424-446, (2001) · Zbl 1028.46041 [5] Fan, X.L.; Zhang, Q.H., Existence of solutions for $$p(x)$$-Laplacian Dirichlet problem, Nonlinear anal., 52, 1843-1852, (2003) · Zbl 1146.35353 [6] Fan, X.L.; Zhao, Y.Z.; Zhao, D., Compact embeddings theorems with symmetry of strauss – lions type for the space $$W^{m, p(x)}(\Omega)$$, J. math. anal. appl., 255, 333-348, (2001) · Zbl 0988.46025 [7] Mawhin, J.; Willem, M., () [8] Mawhin, J., Some boundary value problems for hartman-type perturbations of the ordinary vector $$p$$-Laplacian, Nonlinear anal., 40, 1-8, 497-503, (2000) · Zbl 0959.34014 [9] Natanson, I.P., Theory of functions of a real variable, (1950), Nauka Moscow · Zbl 0064.29102 [10] Rabinowitz, P.H., On subharmonic solutions of Hamiltonian systems, Comm. pure appl. math., 33, 5, 609-633, (1980) · Zbl 0425.34024 [11] Rabinowitz, P.H., Minimax methods in critical point theory with applications to diffferential equations, (1986), American Mathematical Society [12] Rabinowitz, P.H., Homoclinic orbits for a class of Hamiltonian systems, Proc. roy. soc. Edinburgh, 114A, 33-38, (1990) · Zbl 0705.34054 [13] Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 472-499, (1991) · Zbl 0707.58022 [14] Felmer, P.L., Periodic solutions of “superquadraticâ€ť Hamiltonian systems, J. differential equations, 102, 1, 188-207, (1993) · Zbl 0781.34034 [15] Shu, X.B.; Xu, Y.T.; Huang, L.H., Infinite periodic solutions to a class of second-order sturm – liouville neutral differential equations, Nonlinear anal., (2007) [16] Tang, C.L.; Wu, X.P., Notes on periodic solutions of subquadradic second order systems, J. math. anal. appl., 285, 1, 8-16, (2003) [17] Xu, B.; Tang, C.L., Some existence results on periodic solutions of ordinary $$p$$-Laplacian systems, J. math. anal. appl., (2007) [18] Zhong, C.K.; Fan, X.L.; Chen, W.Y., Introduction to nonlinear functional analysis, (2004), Lanzhou University Press Lanzhou, (in Chinese) [19] Zhikov, V.V., Averaging of functionals in the calculus of variations and elasticity, Math. USSR izv., 29, 4, 33-66, (1987) · Zbl 0599.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.