zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization control of chaotic neural networks with time-varying and distributed delays. (English) Zbl 1171.34049
Summary: This paper deals with the synchronization problem of chaotic neural networks with both interval time-varying and distributed time-varying delays. By introducing an improved Lyapunov-Krasovskii functional, a delay-dependent feedback controller is derived to achieve exponential synchronization by means of a drive-response concept and a linear matrix inequality method. Finally, three numerical examples are given to show the effectiveness of the synchronization scheme.

MSC:
34K25Asymptotic theory of functional-differential equations
34K35Functional-differential equations connected with control problems
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[2] Carroll, T. L.; Pecora, L. M.: Synchronization chaotic circuits. IEEE trans. Circuits syst. 38, No. 4, 453-456 (1991)
[3] Liao, T. L.; Tsai, S. H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos solitons fractals 11, No. 9, 1387-1396 (2001) · Zbl 0967.93059
[4] Perez-Munuzuri, V.; Perez-Villar, V.; Chua, L. O.: Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE trans. Circuits syst. I 40, No. 3, 174-181 (1993) · Zbl 0800.92038
[5] Zou, F.; Nossek, J. A.: A chaotic attractor with cellular neural networks. IEEE trans. Circuits syst. I 38, 811-822 (1991)
[6] Zou, F.; Nossek, J. A.: Bifurcation and chaos in cellular neural networks. IEEE trans. Circuits syst. I 1993 40, No. 3, 166-173 (1993) · Zbl 0782.92003
[7] Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE trans. Circuits syst. I 40, No. 11, 849-853 (1993) · Zbl 0844.58056
[8] Lu, H. T.; He, Z. Y.: Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE trans. Circuits syst. I 43, 700-702 (1993)
[9] Lu, H. T.: Chaotic attractors in delayed neural networks. Phys. lett. A 298, 109-116 (2002) · Zbl 0995.92004
[10] Lu, H. T.: Chaotic attractors in delayed neural networks. Phys. lett. A 298, 109-116 (2002) · Zbl 0995.92004
[11] Yan, Jun-Juh; Lin, Jui-Sheng; Hung, Meei-Ling; Liao, Teh-Lu: On the synchronization of neural networks containing time-varying delays and sector nonlinearity. Phys. lett. A 361, 70-77 (2007) · Zbl 1170.34334
[12] Cheng, Chao-Jung; Liao, Teh-Lu; Hwang, Chi-Chuan: Exponential synchronization of a class of chaotic neural networks. Chaos solitons fractals 24, 197-206 (2005) · Zbl 1060.93519
[13] Cheng, Chao-Jung; Liao, Teh-Lu; Yan, Jun-Juh; Hwang, Chi-Chuan: Synchronization of neural networks by decentralized feedback control. Phys. lett. A 338, 28-35 (2005) · Zbl 1136.37366
[14] Yu, W. W.; Cao, J. D.: Synchronization control of stochastic delayed neural networks. Physica A 373, 252-260 (2007)
[15] Sun, Y. H.; Cao, J. D.; Wang, Z. D.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, No. 13, 2477-2485 (2007)
[16] Cao, J. D.; Li, P.; Wang, W. W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. lett. A 353, 318-325 (2006)
[17] Li, P.; Cao, J. D.; Wang, Z. D.: Robust impulsive synchronization of coupled delayed neural networks with uncertainties. Physica A 373, 261-272 (2007)
[18] Li, T.; Fei, S. M.; Zhang, K. J.: Synchronization control of recurrent neural networks with distributed delays. Physica A 387, No. 4, 982-996 (2008)
[19] Li, T.; Fei, S. M.; Zhu, Q.; Cong, S.: Exponential synchronization of chaotic neural networks with mixed delays. Neurocomputing 71, No. 13--15, 3005-3019 (2008)
[20] Xu, S. Y.; Lam, J.; Ho, D. W. C.; Zou, Y.: Delay-dependent exponential stability for a class of neural networks with time delays. J. comput. Appl. math. 183, No. 1, 16-28 (2005) · Zbl 1097.34057
[21] Xu, S. Y.; Lam, J.; Ho, D. W. C.: Novel global robust stability criteria for interval neural networks with multiple time-varying delays. Phys. lett. A 342, No. 4, 322-328 (2005) · Zbl 1222.93178
[22] Xu, S. Y.; Lam, J.; Ho, D. W. C.; Zou, Y.: Global robust exponential stability analysis for interval recurrent neural networks. Phys. lett. A 325, No. 2, 124-133 (2004) · Zbl 1161.93335
[23] Liu, Y. R.; Wang, Z. D.; Liu, X. H.: Design of exponential state estimators for neural networks with mixed time delays. Phys. lett. A 364, No. 5, 401-412 (2007)
[24] Chen, W. H.; Lu, X. M.: Delay-dependent exponential stability of neural networks with variable delay: an LMI approach. IEEE trans. Circuits syst. II 53, 837-842 (2006)
[25] Zhang, X. M.; Wu, M.; She, J. H.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41, 1405-1412 (2005) · Zbl 1093.93024
[26] He, Y.; Wu, M.: Delay-dependent exponential stability of delayded neural networks with time-varying delay. IEEE trans. Circuits syst. 53, 553-556 (2006)
[27] Li, C. D.; Chen, J. Y.: A new criterion for global robust stability of interval neural networks with discrete time delays. Chaos solitions fractals 31, 561-570 (2007) · Zbl 1143.34049
[28] Xu, S. Y.; Lam, James: Novel global stability criteria for interval neural networks with multiple time-varying delays. Phys. lett. A 342, 322-330 (2005) · Zbl 1222.93178