zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive boundary value problems with nonlinear boundary conditions. (English) Zbl 1171.34309
The authors present sufficient conditions for the existence of a solution to a second order boundary value problem with impulses. The problem has nonlinear boundary conditions. The authors assume the existence of lower and upper solutions associated with the problem considered and that the nonlinearity of the differential equation satisfies a Nagumo-Wintner condition relative to that lower and upper solutions. Besides, some monotonicity conditions on the impulsive functions and on the functions which define the nonlinear boundary conditions are imposed.

34B37Boundary value problems for ODE with impulses
34B15Nonlinear boundary value problems for ODE
Full Text: DOI
[1] Agarwal, R. P.; O’regan, D.: Multiple nonngative solutions for second order impulsive differential equations, Appl. math. Comput. 114, 51-59 (2000) · Zbl 1047.34008 · doi:10.1016/S0096-3003(99)00074-0
[2] Agarwal, R. P.; O’regan, D.: A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem, Appl. math. Comput. 161, 433-439 (2005) · Zbl 1070.34042 · doi:10.1016/j.amc.2003.12.096
[3] Boucherif, A.; Bouguima, S. M.: Solvability of nonlocal multipoint boundary value problems, Nonlinear stud. 8, 395-405 (2001) · Zbl 1046.34027
[4] Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: periodic solutions and applications, (1993) · Zbl 0815.34001
[5] Benchohra, M.; Ntouyas, S. K.: On second order impulsive functional differential equations in Banach spaces, J. appl. Math. stoch. Anal. 15, 47-55 (2002) · Zbl 1005.34071 · doi:10.1155/S1048953302000059
[6] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.: Upper and lower solutions method for first order impulsive differential inclusions with nonlinear boundary conditions, Appl. math. Comput. 47, 1069-1078 (2004) · Zbl 1068.34009 · doi:10.1016/S0898-1221(04)90087-9
[7] Cabada, A.; Pouso, R. L.; Liz, E.: A generalization of the method of upper and lower solutions for discontinuous first order problems with nonlinear boundary conditions, Appl. math. Comput. 114, 135-148 (2000) · Zbl 1027.34006 · doi:10.1016/S0096-3003(99)00107-1
[8] Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. math. Anal. appl. 185, 302-320 (1994) · Zbl 0807.34023 · doi:10.1006/jmaa.1994.1250
[9] Dong, Y.: Periodic solutions for second order impulsive differential systems, Nonlinear anal. 27, 811-820 (1996) · Zbl 0858.34035 · doi:10.1016/0362-546X(95)00068-7
[10] Ding, W.; Mi, J. R.; Han, M.: Periodic boundary value problems for the first order impulsive functional differential equations, Appl. math. Comput. 165, 443-456 (2005) · Zbl 1081.34081 · doi:10.1016/j.amc.2004.06.022
[11] Erbe, L. H.; Liu, X.: Existence results for boundary value problems of second order impulsive differential equations, J. math. Anal. appl. 149, 56-69 (1990) · Zbl 0711.34027 · doi:10.1016/0022-247X(90)90285-N
[12] Ehme, J.; Eloe, P. W.; Henderson, J.: Upper and lower solution methods for fully nonlinear boundary value problems, J. differential equations 180, 51-64 (2002) · Zbl 1019.34015 · doi:10.1006/jdeq.2001.4056
[13] Franco, D.; Nieto, J. J.; O’regan, D.: Upper and lower solutions for first order problems with nonlinear boundary conditions, Extracta math. 18, No. 2, 153-160 (2003) · Zbl 1086.34509
[14] Franco, D.; Nieto, J. J.: First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions, Nonlinear anal. Ser. A: Tam 42, 163-173 (2000) · Zbl 0966.34025 · doi:10.1016/S0362-546X(98)00337-X
[15] Granas, A.; Guenther, R. B.; Lee, J. W.: Some general existence principle in Carathéodory theory of nonlinear differential system, J. math. Pures appl. 70, 153-196 (1991) · Zbl 0687.34009
[16] Guo, D.; Liu, X.: Multiple positive solutions of boundary value problems for impulsive differential equations, Nonlinear anal. Tam 25, 327-337 (1995) · Zbl 0840.34015 · doi:10.1016/0362-546X(94)00175-H
[17] Jankowski, T.: Ordinary differential equations with anti-periodic and nonlinear boundary value conditions of anti-periodic type, Comput. math. Appl. 47, 1429-1436 (2004) · Zbl 1105.34007 · doi:10.1016/S0898-1221(04)90134-4
[18] Kiguradze, I.; Stanek, Svatoslav: On periodic boundary value problem for equation u”=$f(t,u,u')$ with one -sided growth restrictions on f, Nonlinear anal. 48, 1065-1076 (2002) · Zbl 1004.34012 · doi:10.1016/S0362-546X(00)00235-2
[19] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[20] Li, J. L.; Shen, J.: Existence of solutions for first order impulsive differential equations with nonlinear boundary conditions, Dyn. contin. Discrete. impuls. Syst. 2, 47-53 (2004) · Zbl 1090.34527
[21] Rachunková, I.; Tomec?ek, J.: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions, J. math. Anal. appl. 292, 525-539 (2004) · Zbl 1058.34031 · doi:10.1016/j.jmaa.2003.12.023
[22] Rachunková, I.; Tvrdy, M.: Existence results for impulsive second-order periodic problems, Nonlinear anal. 59, 133-146 (2004) · Zbl 1084.34031 · doi:10.1016/j.na.2004.07.006
[23] Zhang, Z.: Existence of solutions for second order impulsive differential equation, Appl. math. Ser B (English ed.) 12, 307-320 (1997) · Zbl 0885.34018 · doi:10.1007/s11766-997-0032-9