zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization between two different chaotic systems via nonlinear feedback control. (English) Zbl 1171.34324
Summary: This work presents chaos synchronization between two different chaotic systems via nonlinear feedback control. On the basis of a converse Lyapunov theorem and balanced gain scheme, control gains of controller are derived to achieve chaos synchronization for the unified chaotic systems. Numerical simulations are shown to verify the results.

MSC:
34D05Asymptotic stability of ODE
34C28Complex behavior, chaotic systems (ODE)
34H05ODE in connection with control problems
93B52Feedback control
WorldCat.org
Full Text: DOI
References:
[1] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Chen, M.; Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos solitons fractals 17, 709-716 (2003) · Zbl 1044.93026
[3] Zhang, H.; Ma, X. K.; Xue, B. L.: A novel boundedness-based linear and nonlinear approach to control chaos. Chaos solitons fractals 22, 433-442 (2004) · Zbl 1091.93010
[4] Park, J. H.: Controlling chaotic systems via nonlinear feedback control. Chaos solitons fractals 23, 1049-1054 (2005) · Zbl 1061.93508
[5] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[6] Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys. lett. A 320, 271-275 (2004) · Zbl 1065.93028
[7] Chen, H. K.: Global chaos synchronization of new chaotic systems via nonlinear control. Chaos solitons fractals 23, 1245-1251 (2005) · Zbl 1102.37302
[8] Yassen, M. T.: Chaos synchronization between two different chaotic systems using active control. Chaos solitons fractals 23, 131-140 (2005) · Zbl 1091.93520
[9] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos solitons fractals 14, 529-541 (2002) · Zbl 1067.37043
[10] Khalil, H. K.: Nonlinear systems. (1992) · Zbl 0969.34001
[11] Chen, H. H.: Global synchronization of chaotic systems via linear balanced feedback control. Appl. math. Computat. 186, 923-931 (2007) · Zbl 1113.93047
[12] Park, J. H.: Stability criterion for synchronization of linearly coupled unified chaotic systems. Chaos solitons fractals 23, 1319-1325 (2005) · Zbl 1080.37035