zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A numerical approach to ergodic problem of dissipative dynamical systems. (English) Zbl 1171.34327
Summary: Based on the Lyapunov characteristic exponents, the ergodic property of dissipative dynamical systems with a few degrees of freedom is studied numerically by employing, as an example, the Lorenz system. The Lorenz system shows the spectra of $(+,0,-)$ type concerning the 1-dimensional Lyapunov exponents, and the exponents take the same values for orbits starting from almost of all initial points on the attractor. This result suggests that the ergodic property for general dynamical systems not necessarily belonging to the category of the axiom-A may also be characterized in the framework of the spectra of the Lyapunov characteristic exponents.

34D20Stability of ODE
65L99Numerical methods for ODE
Full Text: DOI