zbMATH — the first resource for mathematics

Analytic structure of many-body Coulombic wave functions. (English) Zbl 1171.35110
Summary: We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let \(\psi (\mathbf x)\) with \({{\mathbf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}\) denote an \(N\)-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which \(x_{1} = 0\) and the other electron coordinates do not coincide, and differ from \(0\), \(\psi \) can be represented locally as \(\psi (\mathbf x) = \psi^{(1)}(\mathbf x) + |x _{1}|\psi^{(2)}(\mathbf x)\) with \(\psi^{(1)}, \psi^{(2)}\) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.

35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35A30 Geometric theory, characteristics, transformations in context of PDEs
Full Text: DOI arXiv
[1] Castella F., Jecko T., Knauf A.: Semiclassical Resolvent Estimates for Schrödinger Operators with Coulomb Singularities. Ann. Henri Poincaré 9(4), 775–815 (2008) · Zbl 1162.81019 · doi:10.1007/s00023-008-0372-x
[2] Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. Math. Model. Numer. Anal. 40(1), 49–61 (2006) · Zbl 1100.81050 · doi:10.1051/m2an:2006007
[3] Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. II. Jastrow factors. Math. Model. Numer. Anal. 41(2), 261–279 (2007) · Zbl 1135.81029 · doi:10.1051/m2an:2007016
[4] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: The Electron Density is Smooth Away from the Nuclei. Comm. Math. Phys. 228(3), 401–415 (2002) · Zbl 1005.81095 · doi:10.1007/s002200200668
[5] Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: On the regularity of the density of electronic wavefunctions. In: Mathematical results in quantum mechanics (Taxco, 2001), Contemp. Math., vol. 307, Providence, RI: Amer. Math. Soc. (2002) pp. 143–148 · Zbl 1041.81104
[6] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Analyticity of the density of electronic wavefunctions. Ark. Mat. 42(1), 87–106 (2004) · Zbl 1068.35118
[7] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Sharp Regularity Results for Coulombic Many-Electron Wave Functions. Commun. Math. Phys. 255(1), 183–227 (2005) · Zbl 1075.35063 · doi:10.1007/s00220-004-1257-6
[8] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Non-Isotropic Cusp Conditions and Regularity of the Electron Density of Molecules at the Nuclei. Ann. Henri Poincaré 8(4), 731–748 (2007) · Zbl 1126.81054 · doi:10.1007/s00023-006-0320-1
[9] Fournais S., Hoffmann-Ostenhof M., Østergaard Sørensen T.: Third Derivative of the One-Electron Density at the Nucleus. Ann. Henri Poincaré 9(7), 1387–1412 (2008) · Zbl 1160.81028 · doi:10.1007/s00023-008-0390-8
[10] Gérard C., Knauf A.: Collisions for the Quantum Coulomb Hamiltonian. Comm. Math. Phys. 143(1), 17–26 (1991) · Zbl 0743.35054 · doi:10.1007/BF02100283
[11] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Berlin: Springer-Verlag, 2001 (reprint of the 1998 edition) · Zbl 1042.35002
[12] Grušin, V.V.: A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold. Mat. Sb. (N.S.) 84 (126), 163–195 (1971) English translation: Math. USSR-Sb. 13, 155–185 (1971)
[13] Helffer B., Knauf A., Siedentop H., Weikard R.: On the absence of a first order correction for the number of bound states of a Schrödinger operator with Coulomb singularity. Comm. Part. Differ. Eq. 17(3–4), 615–639 (1992) · Zbl 0756.35061
[14] Helffer B., Siedentop H.: Regularization of atomic Schrödinger operators with magnetic field. Math. Z. 218(3), 427–437 (1995) · Zbl 0826.35103 · doi:10.1007/BF02571913
[15] Helffer B., Siedentop H.: A generalization of the Kustaanheimo-Stiefel transform for two-centre systems. Bull. London Math. Soc. 28(1), 33–42 (1996) · Zbl 0865.35097 · doi:10.1112/blms/28.1.33
[16] Hill R.N.: On the analytic structure of the wave function for a hydrogen atom in an analytic potential. J. Math. Phys. 25(5), 1577–1583 (1984) · Zbl 0565.47035 · doi:10.1063/1.526333
[17] Hopf H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104(1), 637–665 (1931) · JFM 57.0725.01 · doi:10.1007/BF01457962
[18] Hörmander, L.: Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116. Berlin: Springer-Verlag, 1976
[19] Jost, R.: Das H-Atom nach Kustaanheimo-Stiefel-Scheifele. Lecture notes by H. Tschudi of a course by R. Jost on theoretical physics for mathematicians, Winter Semester 1974/75, ETH-Zürich, 1975
[20] Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl. Math. 10, 151–177 (1957) · Zbl 0077.20904 · doi:10.1002/cpa.3160100201
[21] Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995 (reprint of the 1980 edition) · Zbl 0836.47009
[22] Knauf A.: The n-centre problem of celestial mechanics for large energies. J. Eur. Math. Soc. 4(1), 1–114 (2008) · Zbl 1010.70011 · doi:10.1007/s100970100037
[23] Krantz, S.G., Parks, H.R.: A primer of real analytic functions, second ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Boston, MA: Birkhäuser Boston Inc., 2002
[24] Kustaanheimo, P.E.: Spinor regularization of the Kepler motion. Ann. Univ. Turku. Ser. A I No. 73, 7 (1964) · Zbl 0123.40301
[25] Kustaanheimo P.E., Stiefel E.L.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965) · Zbl 0151.34901 · doi:10.1515/crll.1965.218.204
[26] Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. (N.S.) 42(3), 291–363 (2005) (electronic) · Zbl 1136.81371
[27] Müller, C.: Spherical harmonics. Lecture Notes in Mathematics, vol. 17. Berlin: Springer-Verlag, 1966 · Zbl 0138.05101
[28] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier Analysis, Self-Adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975 · Zbl 0308.47002
[29] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Series, No. 32. Princeton, N.J.: Princeton Univ. Press, 1971 · Zbl 0232.42007
[30] Stiefel, E.L., Scheifele, G.: Linear and regular celestial mechanics. Perturbed two-body motion, numerical methods, canonical theory. Die Grundlehren der mathematischen Wissenschaften, Band 174. New York: Springer-Verlag, 1971 · Zbl 0226.70005
[31] Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98(4), 731–759 (2004) · Zbl 1062.35100 · doi:10.1007/s00211-003-0498-1
[32] Yserentant H.: Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101(2), 381–389 (2005) · Zbl 1084.65125 · doi:10.1007/s00211-005-0581-x
[33] Yserentant H.: The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105(4), 659–690 (2007) · Zbl 1116.78007 · doi:10.1007/s00211-006-0038-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.