×

High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics. (English) Zbl 1171.76039

Summary: In many realistic calculations, the computational grid spacing required to resolve the mean flow gradients is much smaller than the grid spacing required to resolve the unsteady propagating waves of interest. Because of this, the high temporal resolution provided by existing optimized time marching schemes can be excessive due to the small time step required for stability in regions of clustered grid. In this work, explicit fourth-order accurate Runge-Kutta time marching schemes are optimized to increase the inviscid stability limit rather than the accuracy at large time steps. Single and multiple-step optimized schemes are developed and analyzed. The resulting schemes are validated on several realistic benchmark problems.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tam, C.K.W., Computational aeroacoustics: issues and methods, Aiaa j., 33, 10, 1788-1796, (1995) · Zbl 0856.76080
[2] S.K. Lele, Computational Aeroacoustics: A Review, AIAA Paper 97-0018, Reno, NV, 1997.
[3] Lele, S.K., Compact finite-difference schemes with spectral-like resolution, J. comput. phys., 103, 16-42, (1992) · Zbl 0759.65006
[4] Tam, C.K.W.; Webb, J.C., Dispersion-relation-preserving finite-difference schemes for computational acoustics, J. comput. phys., 107, 262-281, (1993) · Zbl 0790.76057
[5] Kim, J.W.; Lee, D.J., Optimized compact finite-difference schemes with maximum resolution, Aiaa j., 34, 887-893, (1996) · Zbl 0900.76317
[6] Williamson, J.H., Low storage runge – kutta schemes, J. comput. phys., 35, 48-56, (1980) · Zbl 0425.65038
[7] Visbal, M.R.; Gaitonde, D.V., Very high order spatially implicit schemes for computational acoustics on curvilinear meshes, J. comput. acoust., 9, 1259-1286, (2001) · Zbl 1360.76192
[8] Hu, F.Q.; Hussaini, M.Y.; Manthey, J., Low dissipation and dispersion runge – kutta schemes for computational acoustics, J. comput. phys., 124, 177-191, (1996) · Zbl 0849.76046
[9] Stanescu, D.; Habashi, W.G., 2N-storage low dissipation and dispersion runge – kutta schemes for computational acoustics, J. comput. phys., 143, 674-681, (1998) · Zbl 0952.76063
[10] Calvo, M.; Franco, J.M.; Randez, L., A new minimum storage runge – kutta scheme for computational acoustics, J. comput. phys., 201, 1-12, (2004) · Zbl 1059.65061
[11] J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam (Eds.), ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA), NASA CP-3300, Hampton, VA, 1994.
[12] C.K.W. Tam, J.C. Hardin (Eds.), Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP-3352, Hampton, VA, 1996.
[13] M. Dahl (Ed.), Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP-2000-209790, Cleveland, OH, 2000.
[14] M. Dahl, (Ed.), Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP-2004-212954, Cleveland, OH, 2004.
[15] Shen, H.; Tam, C.K.W., Three dimensional numerical simulation of the jet screech phenomenon, Aiaa j., 40, 33-41, (2002)
[16] D. Rizzetta, M. Visbal, Numerical Simulation of Separation Control for a Transitional Highly-Loaded Low-Pressure Turbine, AIAA Paper 2004-2204, Portland, OR, June 2004.
[17] A. Jameson, Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AIAA Paper 91-1596, Honolulu, HI, June 1991.
[18] Kennedy, C.A.; Carpenter, M.H., Several new numerical methods for compressible shear-layer simulations, Appl. numer. simulat., 14, 397-433, (1994) · Zbl 0804.76062
[19] Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R., Comparison of numerical schemes for a realistic computational aeroacoustics benchmark problem, Int. J. aeroacoust., 3, 379-398, (2004)
[20] J.R. Scott, Single airfoil gust response problem, in: Proceedings of the Fourth CAA Workshop on Benchmark Problems, NASA CP-2004-212954, October 2003, pp. 45-58.
[21] Hixon, R.; Golubev, V.; Mankbadi, R.R.; Scott, J.R.; Sawyer, S.; Nallasamy, M., Application of a nonlinear computational aeroacoustics code to the gust-airfoil problem, Aiaa j., 44, 323-328, (2006)
[22] Butcher, J.C., The numerical analysis of ordinary differential equations, (1987), Wiley New York · Zbl 0616.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.