×

zbMATH — the first resource for mathematics

Measurement-only topological quantum computation via anyonic interferometry. (English) Zbl 1171.81004
Summary: We describe measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge. We demonstrate how anyonic teleportation can be achieved using “forced measurement” protocols for both types of measurement. Using this, it is shown how topological charge measurements can be used to generate the braiding transformations used in topological quantum computation, and hence that the physical transportation of computational anyons is unnecessary. We give a detailed discussion of the anyonics for implementation of topological quantum computation (particularly, using the measurement-only approach) in fractional quantum Hall systems.

MSC:
81P68 Quantum computation
81V70 Many-body theory; quantum Hall effect
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] von Neumann, J., Mathematical foundations of quantum mechanics, (1955), Princeton University Press Princeton, NJ
[2] Kitaev, A.Y., Ann. phys., 303, 2, (2003)
[3] Freedman, M.H.; Kitaev, A.; Larsen, M.J.; Wang, Z., Bull. am. math. soc. (N.S.), 40, 31-38, (2003)
[4] Bonderson, P.; Freedman, M.; Nayak, C., Phys. rev. lett., 101, 010501, (2008)
[5] Bonderson, P.; Shtengel, K.; Slingerland, J.K., Phys. rev. lett., 98, 070401, (2007)
[6] P.H. Bonderson, Non-Abelian Anyons and Interferometry, Ph.D. Thesis, 2007. · Zbl 1151.81004
[7] Bonderson, P.; Shtengel, K.; Slingerland, J.K., Ann. phys., 323, 2709, (2008)
[8] Moore, G.; Read, N., Nucl. phys. B, 360, 362-396, (1991)
[9] Read, N.; Rezayi, E., Phys. rev. B, 59, 8084-8092, (1999)
[10] Bonderson, P.; Slingerland, J.K., Fractional quantum Hall hierarchy and the second Landau level, Phys. rev. B, 78, 125323, (2008)
[11] R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Interferometric measurement of filling factor 5/2 quasiparticle charge, 2008, 0807.0221.
[12] Turaev, V.G., Quantum invariants of knots and 3-manifolds, (1994), Walter de Gruyter Berlin · Zbl 0812.57003
[13] Bakalov, B.; Kirillov, A., Lectures on tensor categories and modular functors, University lecture series, vol. 21, (2001), American Mathematical Society · Zbl 0965.18002
[14] J. Preskill, Topological quantum computation, lecture notes, 2004, http://www.theory.caltech.edu/ preskill/ph219/topological.ps.
[15] Kitaev, A., Ann. phys., 321, 2-111, (2006)
[16] Camino, F.E.; Zhou, W.; Goldman, V.J., Phys. rev. B, 72, 075342, (2005)
[17] Camino, F.E.; Zhou, W.; Goldman, V.J., Phys. rev. lett., 98, 076805, (2007)
[18] Ji, Y.; Chung, Y.; Sprinzak, D.; Heiblum, M.; Mahalu, D.; Shtrikman, H., Nature, 422, 415-418, (2003)
[19] Einstein, A.; Podolsky, B.; Rosen, N., Phys. rev., 47, 777, (1935)
[20] Bell, J.S., Physics, 1, 195, (1964)
[21] Bennett, C.H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K., Phys. rev. lett., 70, 1895, (1993)
[22] Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Nature, 390, 575-579, (1997)
[23] Gottesman, D.; Chuang, I., Nature, 402, 390, (1999)
[24] Raussendorf, R.; Briegel, H.J., Phys. rev. lett., 86, 5188-5191, (2001)
[25] Nielsen, M.A., Phys. lett. A, 308, 96-100, (2003)
[26] Aliferis, P.; Leung, D.W., Phys. rev. A, 70, 062314, (2004)
[27] Bravyi, S., Phys. rev. A, 73, 042313, (2006)
[28] Freedman, M.; Nayak, C.; Walker, K., Phys. rev. B, 73, 245307, (2006)
[29] M. Freedman, C. Nayak, K. Walker, Tilted interferometry realizes universal quantum computation in the Ising TQFT without overpasses, 2005, cond-mat/0512072.
[30] Freedman, M.H.; Larsen, M.J.; Wang, Z., Commun. math. phys., 227, 605-622, (2002)
[31] Freedman, M.H.; Larsen, M.J.; Wang, Z., Commun. math. phys., 228, 177-199, (2002)
[32] Chamon, C.deC.; Freed, D.E.; Kivelson, S.A.; Sondhi, S.L.; Wen, X.G., Phys. rev. B, 55, 2331-2343, (1997)
[33] Fradkin, E.; Nayak, C.; Tsvelik, A.; Wilczek, F., Nucl. phys. B, 516, 704-718, (1998)
[34] Das Sarma, S.; Freedman, M.; Nayak, C., Phys. rev. lett., 94, 166802, (2005)
[35] Stern, A.; Halperin, B.I., Phys. rev. lett., 96, 016802, (2006)
[36] Bonderson, P.; Kitaev, A.; Shtengel, K., Phys. rev. lett., 96, 016803, (2006)
[37] Bonderson, P.; Shtengel, K.; Slingerland, J.K., Phys. rev. lett., 97, 016401, (2006)
[38] Chung, S.B.; Stone, M., Phys. rev. B, 73, 245311, (2006)
[39] Fendley, P.; Fisher, M.P.A.; Nayak, C., Phys. rev. lett., 97, 036801, (2006)
[40] Fendley, P.; Fisher, M.P.A.; Nayak, C., Phys. rev. B, 75, 045317, (2007)
[41] L. Fidkowski, Double point contact in the k=3 Read-Rezayi state, 2007, 0704.3291.
[42] Ardonne, E.; Kim, E.-A., J. stat. mech., L04001, (2008)
[43] Bishara, W.; Nayak, C., Phys. rev. B, 77, 165302, (2008)
[44] Miller, J.B.; Radu, I.P.; Zumbuhl, D.M.; Levenson-Falk, E.M.; Kastner, M.A.; Marcus, C.M.; Pfeiffer, L.N.; West, K.W., Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2, Nat. phys., 3, 561, (2007)
[45] Dolev, M.; Heiblum, M.; Umansky, V.; Stern, A.; Mahalu, D., Nature, 452, 829-834, (2008)
[46] Radu, I.P.; Miller, J.B.; Marcus, C.M.; Kastner, M.A.; Pfeiffer, L.N.; West, K.W., Science, 320, 899, (2008)
[47] Choi, H.C.; Kang, W.; Sarma, S.D.; Pfeiffer, L.N.; West, K.W., Fractional quantum Hall effect in the second Landau level, Phys. rev. B, 77, 081301, (2008)
[48] Moore, G.; Seiberg, N., Commun. math. phys., 123, 177-254, (1989)
[49] Witten, E., Commun. math. phys., 121, 351-399, (1989)
[50] Wess, J.; Zumino, B., Phys. lett. B, 37, 95, (1971)
[51] Witten, E., Nucl. phys. B, 223, 422-432, (1983)
[52] Jones, V.F.R., Bull. am. math. soc., 12, 103-111, (1985)
[53] Wen, X.G., Int. J. mod. phys. B, 6, 1711-1762, (1992)
[54] Ardonne, E.; Schoutens, K., Phys. rev. lett., 82, 25, 5096-5099, (1999)
[55] Wen, X.G., Phys. rev. lett., 66, 802-805, (1991)
[56] Blok, B.; Wen, X.G., Nucl. phys. B, 374, 615, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.