zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetric Chern-Simons-Higgs vortices. (English) Zbl 1171.81020
Summary: We prove the existence of radially symmetric vortices of the static nonself-dual Chern-Simons-Higgs equations with and without magnetic field in dimension 2. The vortex profiles are shown to be monotonically increasing and bounded. For a given vorticity $n$, when there is no magnetic field we prove that the $n$-vortices are stable for $n = 0, \pm 1$.

81T40Two-dimensional field theories, conformal field theories, etc.
81T13Yang-Mills and other gauge theories
81V70Many-body theory; quantum Hall effect
82C10Quantum dynamics and nonequilibrium statistical mechanics (general)
82D55Superconductors (statistical mechanics)
Full Text: DOI
[1] Berger M.S., Chen Y.Y.: Symmetric vortices for the Ginzburg-Landau equations of superconductivity and the nonlinear desingularization phenomenon. J. Funct. Anal. 82, 259--295 (1989) · Zbl 0685.46051 · doi:10.1016/0022-1236(89)90071-2
[2] Caffarelli L., Yang Y.: Vortex condensation in the Chern-Simons-Higgs model: An existence theorm. Commun. Math. Phys. 168, 321--336 (1995) · Zbl 0846.58063 · doi:10.1007/BF02101552
[3] Chae D., Chae M.: The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system. J. Math. Phys. 43, 5470--5482 (2002) · Zbl 1060.81048 · doi:10.1063/1.1507609
[4] Chae D., Choe K.: Global exisence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory. Nonlinearity 15, 747--758 (2002) · Zbl 1073.58014 · doi:10.1088/0951-7715/15/3/314
[5] Guo Y.: Instability of symmetric vortices with large charge and coupling constant. Comm. Pure Appl. Math. 49, 1051--1080 (1996) · Zbl 0866.35120 · doi:10.1002/(SICI)1097-0312(199610)49:10<1051::AID-CPA2>3.0.CO;2-D
[6] Gustafson S., Sigal I.M.: The stability of magnetic vortices. Commun. Math. Phys. 212, 257--275 (2000) · Zbl 0955.58015 · doi:10.1007/PL00005526
[7] Han J.: Radial symmetry of topological one-vortex solutions in the Maxwell-Chern-Simons-Higgs model. Comm. Korean Math. Soc. 19(2), 283--291 (2004) · Zbl 1101.35383 · doi:10.4134/CKMS.2004.19.2.283
[8] Hong J., Kim Y., Pac P.-Y.: Multivortex solutions of the Abelian Chern-Simons-Higgs vortices. Phys. Rev. Lett. 64, 2230--2233 (1990) · Zbl 1014.58500 · doi:10.1103/PhysRevLett.64.2230
[9] Jackiw R., Weinberg E.J.: Self-dual Chern-Simons vortices. Phys. Rev. Lett. 64, 2234--2237 (1990) · Zbl 1050.81595 · doi:10.1103/PhysRevLett.64.2234
[10] Kurzke M., Spirn D.: Gamma-limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal. 255(3), 535--588 (2008) · Zbl 1158.81025 · doi:10.1016/j.jfa.2008.04.020
[11] Modica L., Mortola S.: Il limite nella {$\Gamma$}-convergenza di una famiglia di funczionali elliptici. Boll. Un. Mat. Ital. 14-A, 526--529 (1977)
[12] Ovchinnikov Y.N., Sigal I.M.: Ginzburg-Landau equation I. static vortices. Partial Differential Equations and their Applications 12, 199--220 (1997) · Zbl 0912.35078
[13] Plohr, B.J.: Unpublished thesis, Princeton University, 1980
[14] Reed M., Simon B.: Methods of Modern Mathematical Physics IV. Academic Press, New York (1978) · Zbl 0401.47001
[15] Sandier E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379--403 (1998) · Zbl 0908.58004 · doi:10.1006/jfan.1997.3170
[16] Struwe M.: Variational methods. Springer-Verlag, Berlin-Heidelberg-New York (1990) · Zbl 0746.49010
[17] Struwe M.: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Differential Integral Equations 7(5-6), 1613--1624 (1994) · Zbl 0809.35031
[18] Tarantello G.: Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys. 37, 3769--3796 (1996) · Zbl 0863.58081 · doi:10.1063/1.531601
[19] Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149--162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[20] Yang, Y.: Solitons in field theory and nonlinear analysis. Springer Monographs in Mathematics, New York: Springer-Verlag, 2001 · Zbl 0982.35003