A multi-agent model describing self-renewal of differentiation effects on the blood cell population. (English) Zbl 1171.92312

Summary: A new multi-agent model is used to describe blood cell population dynamics. More particularly, we focus our simulations here on differentiation and self-renewal processes based on cell communication. We consider the different cases where progenitor cells are able to self-renew or not in the bone marrow. As a consequence of this study, we give some possible explanations of the mechanism for recovery of the system under important blood loss or blood diseases such as anemia.


92C37 Cell biology
92C30 Physiology (general)
Full Text: DOI


[1] Lajtha, L.G., On DNA labeling in the study of the dynamics of bone marrow cell populations, (), 173-182
[2] Burns, F.J.; Tannock, I.F., On the existence of a G_{0} phase in the cell cycle, Cell tissue kinet., 3, 321-334, (1970)
[3] Adimy, M.; Pujo-Menjouet, L., A singular transport model describing cellular division, C.R. acad. sci. I-math., 332, 1071-1076, (2001) · Zbl 0982.35029
[4] Adimy, M.; Pujo-Menjouet, L., Asymptotic behavior of a singular transport equation modelling cell division, Discrete contin. dyn. syst. ser. B, 3, 3, 439-456, (2003) · Zbl 1120.35305
[5] Dyson, J.; Villella-Bressan, R.; Webb, G.F., A singular transport equation modelling a proliferating maturity structured cell population, Can. appl. math. Q., 65-95, (1996) · Zbl 0855.92019
[6] Dyson, J.; Villella-Bressan, R.; Webb, G.F., A singular transport equation with delays, Int. J. math. math. sci., 6, 32, 2011-2026, (2003) · Zbl 1028.35158
[7] Bernard, S.; Blair, J.; Mackey, M.C., Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. theoret. biol., 223, 283-298, (2003)
[8] Bernard, S.; Blair, J.; Mackey, M.C., Bifurcations in a white blood cell production model, C. R. biologies, 327, 201-210, (2004)
[9] Haurie, C.; Dale, D.C.; Mackey, M.C., Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models, Blood, 92, 2629-2640, (1998)
[10] Hearn, T.; Haurie, C.; Mackey, M.C., Cyclical neutropenia and the peripheral control of white blood cell production, J. theoret. biol., 192, 167-181, (1998)
[11] Santillan, M.; Blair, J.; Mahaffy, J.M.; Mackey, M.C., Regulation of platelet production: the normal response to perturbation and cyclical platelet disease, J. theoret. biol., 206, 585-903, (2000)
[12] Swinburne, J.; Mackey, M.C., Cyclical thrombocytopenia: characterization by spectral analysis and a review, J. theoret. med., 2, 81-91, (2000) · Zbl 0943.92023
[13] Adimy, M.; Crauste, F.; Ruan, S., Periodic oscillations in leukopoiesis models with two delays, J. theoret. biol., 242, 288-299, (2006)
[14] Adimy, M.; Crauste, F.; Ruan, S., A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. appl. math., 65, 4, 1328-1352, (2005) · Zbl 1090.34058
[15] Colijn, C.; Mackey, M.C, A mathematical model of hematopoiesis: periodic chronic myelogenous leukemia, part 1, J. theoret. biol., 237, 117-132, (2005)
[16] Mackey, M.C.; Ou, C.; Pujo-Menjouet, L.; Wu, J., Periodic oscillations of blood cell populations in chronic myelogenous leukemia, SIAM J. math. anal., 38, 1, 166-187, (2006) · Zbl 1163.34055
[17] Pujo-Menjouet, L.; Mackey, M.C., Contribution to the study of periodic chronic myelogenous leukemia, C.R. biologies, 327, 235-244, (2004)
[18] Watt, F.M.; Hogan, B.L., Out of Eden: stem cells and their niches, Science, 287, 1427-1430, (2000)
[19] Tronche, F.; Wessely, O.; Kellendonk, C.; Reichardt, H.M.; Steinlein, P.; Schutz, G.; Bauer, A.; Beug, H., The glucocorticoid receptor is required for stress erythropoiesis, Genes dev., 13, 22, 2996-3002, (1999)
[20] Gandrillon, O.; Samarut, J.; Mey, A., Un nouveau modèle d’étude de la différenciation érythrocytaire laisse entrevoir une plasticité insoupçonnée des progéniteurs érythrocytaires, Médecine/science, 15, 1295-1297, (1999)
[21] Bessonov, N.; Pujo-Menjouet, L.; Volpert, V., Cell modelling of hematopoiesis, Mathematical modelling of natural phenomena, 1, 2, 81-103, (2006) · Zbl 1337.92042
[22] Koury, M.J.; Bondurant, M.C., Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science, 248, 4953, 378-381, (1990)
[23] Rubiolo, C.; Piazzola, D.; Meissl, K.; Beug, H.; Huber, J.C.; Kolbus, A.; Baccarini, M., A balance between raf-1 and fas expression sets the pace of erythroid differentiation, Blood, 108, 152-159, (2006)
[24] Roeder, I.; Glauche, I., Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors gata-1 and pu.1, J. theoret. biol., 241, 852-865, (2006)
[25] Huang, S.; Guo, Y-P.; May, G.; Enver, T., Bifurcation dynamics in lineage-commitment in bipotent progenitor cells, Develop. biol., 305, 695-713, (2007)
[26] Glauche, I.; Cross, M.; Loeffler, M.; Roeder, I., Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications, Stem cells, 25, 7, 1791-1799, (2007)
[27] Crauste, F.; Pujo-Menjouet, L.; Génieys, S.; Gandrillon, O.; Molina, C., Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis, J. theoret. biol., 250, 322-338, (2008)
[28] Damiola, F.; Keime, C.; Gonin-Giraud, S.; Dazy, S.; Gandrillon, O., Global transcription analysis of immature Avian erythrocytic progenitors: from self-renewal to differentiation, Oncogene, 23, 7628-7643, (2004)
[29] Dazy, S.; Damiola, F.; Parisey, N.; Beug, H.; Gandrillon, O., The mek-1/ erks signalling pathway is differentially involved in the self-renewal of early and late Avian erythroid progenitor cells, Oncogene, 22, 9205-9216, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.