García Vergnolle, L. On quasi-filiform Lie algebras admitting a torus of derivations. (Sur les algèbres de Lie quasi-filiformes admettant un tore de dérivations.) (English) Zbl 1172.17006 Manuscr. Math. 124, No. 4, 489-505 (2007). The main theorem of the paper under review provides a classification for the quasi-filiform Lie algebras that allow for nontrivial diagonalizable derivations. We recall that a nilpotent Lie algebra of dimension \(n\) is said to be quasi-filiform if its nilpotency index is equal to \(n-2\). The present classification is based on the classification of the naturally graded quasi-filiform algebras given by J. R. Gómez and A. Jiménez-Merchán [J. Algebra 256, No. 1, 211–228 (2002; Zbl 1030.17007)]. Reviewer: Daniel Beltiţă (Bucureşti) Cited in 5 Documents MSC: 17B30 Solvable, nilpotent (super)algebras 17B70 Graded Lie (super)algebras Keywords:nilpotent Lie algebra; filiform Lie algebra; torus of derivations Citations:Zbl 1030.17007 PDF BibTeX XML Cite \textit{L. García Vergnolle}, Manuscr. Math. 124, No. 4, 489--505 (2007; Zbl 1172.17006) Full Text: DOI References: [1] Favre G. (1973). Système des poids sur une algèbre de Lie nilpotente. Manuscripta Math. 9: 53–90 · Zbl 0253.17011 [2] Gómez J.R. and Jiménez-Merchán A. (2002). Naturally graded quasi-filiform Lie algebras. J. Algebra 256: 221–228 · Zbl 1030.17007 [3] Goze M. and Ancochea J.M. (2001). On the classification of rigid Lie algebras. J. Algebra 245: 68–91 · Zbl 0998.17010 [4] Goze M. and Hakimjanov Y. (1994). Sur les algèbres de Lie nilpotentes admettant un tore de dérivations. Manuscripta Math. 84: 115–124 · Zbl 0823.17009 [5] Goze M. and Remm E. (2004). Valued Deformations of Algebras. J. Alg. Appl. 3: 345–365 · Zbl 1062.17010 [6] Mal’cev A.I. (1945). Solvable Lie algebras. Izv. Akad. Nauk SSSR 9: 329–356 · Zbl 0061.05303 [7] Vergne M. (1970). Cohomologies des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie Nilpotentes. Bull. Soc. Math. France 98: 81–116 · Zbl 0244.17011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.